Bài 4: Cho DABC vuông cân tại A , vẽ tia Bx và Cy lần lượt vuông góc AB và AC sao cho Bx cắt Cy tại D (D và A nằm hai phía của đường thẳng BC). Chứng minh:a)Tứ giác ABCD là hình chữ nhật.b)Tứ giác ABCD có là hình vuông không ? vì sao ?c)Chứng minh: AD^BC.Bài 5: Cho ∆ABC (A90o) có AB AC. Gọi M là trung điểm của BC. Vẽ MD vuông gócvới AB tại D và ME vuông góc với AC tại E. Vẽ đường cao AH của ∆ABC.a) Chứng minh ADME là hình chữ nhật.b) Chứng minh CMDE là hình bình hành.c) Chứng minh MHDE là hình...
Đọc tiếp
Bài 4: Cho DABC vuông cân tại A , vẽ tia Bx và Cy lần lượt vuông góc AB và AC sao cho Bx cắt Cy tại D (D và A nằm hai phía của đường thẳng BC). Chứng minh:
a)Tứ giác ABCD là hình chữ nhật.
b)Tứ giác ABCD có là hình vuông không ? vì sao ?
c)Chứng minh: AD^BC.
Bài 5: Cho ∆ABC (A=90o) có AB < AC. Gọi M là trung điểm của BC. Vẽ MD vuông góc
với AB tại D và ME vuông góc với AC tại E. Vẽ đường cao AH của ∆ABC.
a) Chứng minh ADME là hình chữ nhật.
b) Chứng minh CMDE là hình bình hành.
c) Chứng minh MHDE là hình thang cân.
Bài 6: Cho DABC cân tại A có AB = 3cm, BC= \(3\sqrt{2}cm\), D là điểm đối xứng với A qua BC.
a)Chứng minh DABC vuông cân tại A.
b)Chứng minh tứ giác ABCD là hình bình hành.
c)Hình bình hành ABCD có hình vuông không ? Vì sao ?