Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thanh Thủy
Xem chi tiết
Mie Mao
Xem chi tiết
Trâm Nguyễn
Xem chi tiết
Mr_Johseph_PRO
28 tháng 11 2021 lúc 11:58

vì góa A=B=C=90 độ

=>ABCD là hình chữ nhật 

mà AB=AC

=>ABCD là hình vuông=>AD vuông góc BC

nguyễn thị nga
Xem chi tiết
Toi hơi nqu :
Xem chi tiết
Phùng khánh my
29 tháng 11 2023 lúc 12:42

a) Để chứng minh tứ giác ABDC là hình chữ nhật, ta cần chứng minh AB || CD và AB = CD.

 

Vì Bx vuông góc với AB, nên AB || Bx.

Vì Cy vuông góc với AC, nên AC || Cy.

Do đó, AB || CD.

 

Ta có:

- Góc ABC = 90 độ (vì tam giác ABC vuông tại A).

- Góc BAC = 90 độ (vì Bx vuông góc với AB).

- Góc ACB = 90 độ (vì Cy vuông góc với AC).

 

Vậy tứ giác ABDC có 4 góc vuông, tức là là hình chữ nhật.

 

b) Gọi M là điểm đối xứng của B qua A và N là điểm đối xứng của C qua A. Ta cần chứng minh tứ giác BCMN là hình thoi và AD = MC.

 

Vì M là điểm đối xứng của B qua A, nên AM = MB và góc AMB = góc BMA = 90 độ.

Vì N là điểm đối xứng của C qua A, nên AN = NC và góc ANC = góc CNA = 90 độ.

 

Do đó, ta có:

- AM = MB = MC (vì M là trung điểm của BC).

- AN = NC = NB (vì N là trung điểm của BC).

- Góc BMC = góc BMA + góc AMC = 90 độ + 90 độ = 180 độ (tổng các góc trong tứ giác là 360 độ).

 

Vậy tứ giác BCMN là hình thoi và AD = MC.

 

c) Gọi E là trung điểm của AC và F là trung điểm của MN. Ta cần chứng minh EF || ND.

 

Vì E là trung điểm của AC, nên AE = EC.

Vì F là trung điểm của MN, nên AF = FN.

 

Do đó, ta có:

- AE = EC = AF = FN.

- Góc AEF = góc AFE = góc NDF = góc NFD = 90 độ (vì E và F lần lượt là trung điểm của AC và MN).

 

Vậy EF || ND.

nhi mai
Xem chi tiết
Du Xin Lỗi
20 tháng 12 2022 lúc 20:51

Hình Tự Vẽ nhe

a)

Tam Giác ABC có:

E là trung điểm của AB (gt)

K là trung điểm của AC(gt)

=> EK là đường trung bình của tam giác ABC

=> EK//BC ( tính chất đường trung bình của tam giác )

b)

Tứ giác ABMC có:

BM//AC ( Bx//AC; M thuộc Bx)

CM//AB ( Cy//AB; M thuộc Cy )

Góc A = 90 độ (gt)

=> tứ giác ABMC là Hình chữ nhật

=> AB//MC (tính chất hình chữ nhật )

c)

Ta có: AB // KO ( Từ K vẽ đường thẳng song song với AB cắt BC tại O )

mà AB//MC(cmt) => MC//KO

Tam Giác ABC có:

K là trung điểm của AC (gt)

KO // AB ( Từ K vẽ đường thẳng song song với AB cắt BC tại O )

=> KO là đường trung bình của tam giác ABC 

=> O là trung điểm của BC ( tính chất đường trung bình trong tam giác )

tam giác AMC có:

K là trung điểm của AC (gt)

KO//MC (cmt)

=> KO là đường trung bình của tam giác AMC => O là trung điểm của AM ( tính chất đường trung bình trong tam giác )

Vì tứ giác ABMC là Hình chữ nhật => AM Cắt BC tại trung điểm của Mỗi đường mà O là trung điểm của AM và BC => AM cắt BC tại O => A;M;O Thẳng hàng

 

 

 

 

Huyền Lê Thị
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 2 2022 lúc 0:56

Bài 2: 

a: \(\widehat{ABE}=\widehat{CBE}=\dfrac{\widehat{ABC}}{2}=\dfrac{60^0}{2}=30^0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\widehat{CFE}=60^0\\\widehat{AEB}=\widehat{CEF}=60^0\end{matrix}\right.\)

=>ΔCFE đều

b: Xét tứ giác ABCD có 

\(\widehat{BAC}=\widehat{BDC}=90^0\)

Do đó: ABCD là tứ giác nội tiếp

Nguyễn Hoàng Hà My
Xem chi tiết
Tường Nguyễn
21 tháng 9 2020 lúc 10:07

a) Ta có:

\(\widehat{A}+\widehat{ABC}+\widehat{BCA}=180\)

\(\Rightarrow\widehat{BCA}=180-90-60=30\)

Vì \(BC\perp Cy\Rightarrow\widehat{BCy}=90\)

Mà \(\widehat{BCy}+\widehat{ECF}+\widehat{BCA}=180\)

\(\Rightarrow\widehat{ECF}=180-90-30=60\left(1\right)\)

Vì \(\widehat{FBC}+\widehat{BCA}+\widehat{BFC}=180\)

\(\Rightarrow\widehat{BFC}=180-\frac{\widehat{ABC}}{2}-\widehat{BCA}\)

\(\Rightarrow\widehat{BFC}=60\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\)\(\Rightarrow\Delta CEF\)là tam giác đều

Khách vãng lai đã xóa
Quỳnh Chi
21 tháng 9 2020 lúc 15:37

a) Xét ΔABC∆ABC vuông tại AA

ˆABC=60oABC^=60o

⇒ACB=30o⇒ACB=30o

Ta có: BEBE là phân giác của ˆBB^

⇒ˆCBE=12ˆABC=30o⇒CBE^=12ABC^=30o

⇒ˆFEC=ˆECB+ˆEBC=60o⇒FEC^=ECB^+EBC^=60o

Xét ΔCBF∆CBF vuông tại CC có:

ˆCBF=30oCBF^=30o

⇒ˆCFB=60o⇒CFB^=60o

Xét ΔCEF∆CEF có:

ˆFEC=ˆCFB=60oFEC^=CFB^=60o

Do đó ΔCEG∆CEG đều

b) Sửa đề: ABCDABCD là hình thang cân

Ta có:

ˆBAC=ˆBDC=90oBAC^=BDC^=90o

Do đó ABCDABCD là tứ giác nội tiếp

⇒ˆACB=ˆADB=30o⇒ACB^=ADB^=30o

Ta lại có: ˆDBC=ˆACB=30oDBC^=ACB^=30o

nên ˆABD=ˆDBCABD^=DBC^

⇒ABCD⇒ABCD là hình thang đáy AB,CDAB,CD

Mặt khác: ΔDBC∆DBC vuông tại DD có:

ˆDBC=30oDBC^=30o

⇒ˆDCB=60o=ˆABC⇒DCB^=60o=ABC^

Do đó ABCDABCD là hình thang cân

Khách vãng lai đã xóa
Nguyễn Hoàng Hà My
Xem chi tiết