Cho tam giác ABC vuông cân tại A , vẽ tia Bx và Cy lần lượt vuông góc AB và AC sao cho Bx cắt Cy tại D (D và A nằm hai phía của đường thẳng BC). Chứng minh:
a)Tứ giác ABCD là hình chữ nhật.
b)Tứ giác ABCD có là hình vuông không ? vì sao ?
c)Chứng minh: AD vuông góc BC.
Bài 1: Cho tam giac ABC vuông cân tại A, vẽ tia Bx và Cy lần lượt vuông goc AB và AC sao cho Bx căt Cy tại D ( D và A nằm hai phia của đường thẳng BC ).
1) Tư giac ABCD là hình chữ nhật
2) Tư giac ABCD co là hinh vuông không? Vì sao?
3) Chưng minh: \(AD\perp BC\)
cho hình bình hành ABCD có hai đường chéo AC và BD cắt nhau taị O. đường thẳng d1 qua O cắt cạnh AB và CD lần lượt tại M và P,đường thẳng d2 qua O cắt cạnh BC và DA lần lượt tại N và Q. BIẾT rằng d1 vuông góc d2.
c/m:
a, tứ giác MNPQ là hình bình hành
b, tứ giác MNPQ là hình thoi.
bài 2:cho tam giác ABC cân tại A. kẻ Bx//AC, Cy// AB, sao cho 2 tia Bx và Cy cắt nhau tại D.
1, C/M tứ giác ABCD là hình thoi
2, các đường trung tuyến BM vàCN của tam giác ABC cắt nhau ở G. AG cắt BC tại O. c/m AO là đường cao của tam giác ABC.
3, C/M A,O,D thẳng hàng.
cho tam giác ABC vuông tại A có góc B= 60 độ. gọi tia Bx là tia phân giác của góc B cắt AC tại E. vẽ tia Cy vuông góc BC sao cho Cy cắt Bx tại F.
a) CM: tam giác CEF đều
b)vẽ CD vuông góc với EF. CM: tứ giác ABCD là hình thang cân.
cho tam giác nhọn ABC, trực tâm H, trên nửa mặt phẳng bờ BC không chứa điểm A. Vẽ các tia Bx vuông góc với AB, Cy vuông góc với CA, chúng cắt nhau tại D.
a) Tứ giác BHCD là hình gì? Vì sao?
b) Gọi E là điểm sao cho BC là đường trung trực của EH. Chứng minh rằng Tứ giác BCDE là hình thang cân.
c) BD cắt EH TẠI K , Tam giác ABC phải có điều kiện gì để Tứ giác HCDK là hình thang cân
cho tam giác nhọn ABC, trực tâm H, trên nửa mặt phẳng bờ BC không chứa điểm A. Vẽ các tia Bx vuông góc với AB, Cy vuông góc với CA, chúng cắt nhau tại D.
a) Tứ giác BHCD là hình gì? Vì sao?
b) Gọi E là điểm sao cho BC là đường trung trực của EH. Chứng minh rằng Tứ giác BCDE là hình thang cân.
c) BD cắt EH TẠI K , Tam giác ABC phải có điều kiện gì để Tứ giác HCDK là hình thang cân
Bài 1: Cho hình bình hành ABCD. Vẽ tia Bx vuông góc với AC, Dy vuông góc với AC. Đường thẳng qua A vuông góc với BD cắt Bx tại P, cắt Dy tại Q. Đường thẳng qua C vuông góc với BD cắt Bx tại N, cắt Dy tại M. Đường thẳng NQ cắt AD ở E, BC ở F. CMR: MNPQ, MEPF là hình bình hành.
Bài 2: Cho tứ giác ABCD có AD = BC, góc C và góc D tù. Gọi M, N, P, Q lần lượt là trung điểm AB, AC, CD, BD. MNPQ là hình gì? Chứng minh.
Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,
P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.
a) Chứng minh tứ giác MEPF là hình thoi.
b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.
c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàng
Bài 2: Cho tam giác ABC vuông tại A (AB<AC), M là trung điểm BC, từ M kẻ
đường thẳng song song với AC, AB lần lượt cắt AB tạt E, cắt AC tại F
a) Chứng minh EFCB là hình thang
b) Chứng minh AEMF là hình chữ nhật
c) Gọi O là trung điểm AM. Chứng minh: E và F đối xứng qua O.
d) Gọi D là trung điểm MC. Chứng minh: OMDF là hình thoi
Bài 3: Cho tam giác ABC có AB<AC. Gọi M, N, P lần lượt là trung điểm của AB,
AC, BC. Vẽ đường cao AH của tam giác ABC. Tứ giác HMNP là hình gì.
Bài 4: Cho tứ giác ABCD có góc DAB = góc BCD = 120 0 . Tính số đo của hai góc
còn lại để ABCD là hình bình hành.
Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F sao
cho AE=EF=FC.
a) Tứ giác BEDF là hình gì?
b) Chứng minh CFDAEB .
c) Chứng minh CFBEAD .
Bài 6: Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua
trung điểm M của AC.
a) Tứ giác ADCE là hình gì? Vì sao?
b) Tứ giác ABDM là hình gì? Vì sao?
c) Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d) Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?