Trong hệ trục 0xy, cho A(1;1); B(2;4); C(10;-2)
a)Chứng minh tam giác ABC vuông
b)Tính \(\overrightarrow{BA}\).\(\overrightarrow{BC}\); cosB; cosC
Trong mặt phẳng 0xy , vecto pháp truyến của trục hoành là :
A.(0;-2)
B.(-3;0)
C.(1;1)
D.(-1;1)
A đúng, trục hoành nhận mọi vecto có dạng \(\left(0;k\right)\) với \(k\ne0\) là vtpt
a,Vuông tại A mới đúng
\(AB=2\sqrt{10};AC=\sqrt{10};BC=5\sqrt{2}\)
\(\Rightarrow AB^2+AC^2=40+10=50=BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A
b, \(S_{\Delta ABC}=\dfrac{1}{2}.AB.AC.sinA=\dfrac{1}{2}.2\sqrt{10}.\sqrt{10}.sin90^o=10\)
c, \(D\left(0;y_0\right)\)
\(A;C;D\) thẳng hàng \(\Leftrightarrow\overrightarrow{AC}=k.\overrightarrow{AD}\)
\(\Leftrightarrow\left\{{}\begin{matrix}3=k\\-1=k\left(y_0-4\right)\end{matrix}\right.\Rightarrow y_0=\dfrac{11}{3}\)
\(\Rightarrow D\left(0;\dfrac{11}{3}\right)\)
trong mặt phẳng 0xy cho A(-1;2)
a) viết ptdt (d) đi qua A và có hệ số góc là -3 vẽ (d)
b) viết ptdt (d1) đi qua M( 2;3) và N(4;5)
c) tìm tọa độ giao điểm (d) và (d1)
a: Vì hệ số góc là -3 nên a=-3
Vậy: (d): y=-3x+b
THay x=-1 và y=2 vào (d), ta được: b+3=2
hay b=-1
Trong mặt phẳng 0xy cho A(-1;2)
a)Viết phương trình đường thẳng (d) đi qua A và có hệ số góc là -3. Vẽ (d)
b)Viết phương trình đường thẳng (d1) đi qua M( 2;3) và N(4;5)
c)Tìm tọa độ giao điểm (d) và (d1)
a: Vì (d) có hệ số góc là -3 nên a=-3
Vậy: (d): y=-3x+b
Thay x=-1 và y=2 vào (d), ta được:
b+3=2
hay b=-1
\(a,\) Gọi \(\left(d\right):y=ax+b\left(a\ne0\right)\) là đt cần tìm
\(\Leftrightarrow\left\{{}\begin{matrix}-a+b=2\\a=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=-1\end{matrix}\right.\Leftrightarrow\left(d\right):y=-3x-1\)
\(b,\) Gọi \(\left(d_1\right):y=ax+b\left(a\ne0\right)\) là đt cần tìm
\(\Leftrightarrow\left\{{}\begin{matrix}2a+b=3\\4a+b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\Leftrightarrow\left(d_1\right):y=x+1\)
\(c,PTHDGD:-3x-1=x+1\Leftrightarrow x=-\dfrac{1}{2}\Leftrightarrow y=\dfrac{1}{2}\Leftrightarrow B\left(-\dfrac{1}{2};\dfrac{1}{2}\right)\\ \text{Vậy }B\left(-\dfrac{1}{2};\dfrac{1}{2}\right)\text{ là giao 2 đths}\)
trong mặt phẳng 0xy , cho A ( 1 ;2 ) , B(4,1) C ( 5 ; 4 ) . Tính BAC?
AB=(3;-1)
AC=(4;2)
AB.AC= |AB|.|AC|.cos(AB,AC)
cos( AB,AC)= \(\dfrac{10}{\sqrt{10}.2\sqrt{5}}=\dfrac{\sqrt{2}}{2}\)
BAC=45
Cho hệ phương trình x + y - 3 = 0 x y - 2 x + 2 = 0 có nghiệm là x 1 ; y 1 và x 2 ; y 2 . Tính x 1 + x 2 .
A. 2.
B. 0.
C. -1.
D. 1.
Trong không gian với hệ trục Oxyz, cho hai điểm M (1; 2; 1); N (-1; 0; -1). Có bao nhiêu mặt phẳng qua M, N cắt trục Ox, trục Oy lần lượt tại A, B (A ≠ B) sao cho AM = √3BN
A. 1
B. 2
C. 3
D. Vô số.
Chọn B
Gọi là vectơ pháp tuyến của (P) thỏa yêu cầu bài toán.
(P) qua N (-1; 0; -1) nên phương trình mặt phẳng có dạng:
A(x+1) + By + C(z+1) = 0 <=> Ax + By + Cz + A + C = 0
• (P) qua M (1;2;1) suy ra
A + 2B + C + A + C = 0 <=> A + B + C = 0 => A + C = - B (1)
• (P) cắt trục Ox tại A(a; 0; 0) suy ra A.a + A + C = 0 => A.a - B = 0 => a = B/A
(Do nếu A = 0 => B = 0 => C = 0 nên A ≠ 0). Suy ra A(B/A; 0; 0)
• (P) cắt trục Oy tại B (0; b; 0) suy ra B.b + A + C = 0 => B.b - B = 0 => B = 0 hoặc b = 1
TH1: B = 0 => A + C = 0. Chọn C = 1 => A = -1
Phương trình mặt phẳng (P) có dạng: x - z = 0 => A ≡ B ≡ O (0;0;0) => không thỏa yêu cầu.
TH2: b = 1 => B (0;1;0),
· B/A = -1 => B = -A => C = 0. Chọn A = 1 => B = -1
Phương trình mp (P): x - y + 1 = 0
· B/A = 3 => B = 3A => C = -4A. Chọn A = 1 => B = 3 => C = -4.
Phương trình mp (P): x + 3y - 4z - 3 = 0
Vậy có hai mặt phẳng thỏa yêu cầu.
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(-3;2;-1). Tọa độ điểm A' đối xứng với A qua trục Oy là
A. A'(-3;2;1)
B. A'(3;2;-1)
C. A'(3;2;1)
D. A'(3;-2;-1)
Trong hệ trục toạ độ Oxy cho hai điểm A(1;4) và B(6;-1).
Tìm toạ độ điểm P thuộc trục tung sao cho PA= \(\dfrac{1}{3}\)PB
- Gọi tọa độ điểm P ( x; y )
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{PA}=\left(1-x;4-y\right)\\\overrightarrow{PB}=\left(6-x;-1-y\right)\end{matrix}\right.\)
Mà \(\overrightarrow{PA}=\dfrac{1}{3}\overrightarrow{PB}\)
\(\Rightarrow\left\{{}\begin{matrix}1-x=\dfrac{1}{3}\left(6-x\right)\\4-y=\dfrac{1}{3}\left(-1-y\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=\dfrac{13}{2}\end{matrix}\right.\)
Vậy tọa độ của điểm P thỏa mãn là : \(P\left(-\dfrac{3}{2};\dfrac{13}{2}\right)\)