Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bình Thiên
Xem chi tiết
Là Tôi Tôi
Xem chi tiết
Trần Đức Vinh
Xem chi tiết
Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 3 2021 lúc 23:32

\(f'\left(x\right)=4x\Rightarrow y=2x^2+1-4x\)

\(y'\left(x\right)=4x-4=0\Rightarrow x=1\)

Hoàng Minh
Xem chi tiết
Nguyễn Hà Anh
Xem chi tiết
Lee Yeong Ji
Xem chi tiết
Trần Tuấn Hoàng
5 tháng 6 2022 lúc 22:00

C1:

\(x,y>0\)

\(M=\left(x+\dfrac{1}{x}\right)^2+\left(y+\dfrac{1}{y}\right)^2=x^2+2+\dfrac{1}{x^2}+y^2+2+\dfrac{1}{y^2}=\left(x^2+\dfrac{1}{16x^2}\right)+\left(y^2+\dfrac{1}{16y^2}\right)+\dfrac{15}{16}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+4\)Theo BĐT AM-GM (Caushy) ta có:

\(M=\left(x^2+\dfrac{1}{16x^2}\right)+\left(y^2+\dfrac{1}{16y^2}\right)+\dfrac{15}{16}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+4\ge2\sqrt{x^2.\dfrac{1}{16x^2}}+2\sqrt{y^2.\dfrac{1}{16y^2}}+\dfrac{15}{16}.2\sqrt{\dfrac{1}{x^2}.\dfrac{1}{y^2}}+4=\dfrac{1}{2}+\dfrac{1}{2}+4+\dfrac{15}{4}.\dfrac{1}{xy}\ge5+\dfrac{15}{4}.\dfrac{1}{\left(\dfrac{x+y}{2}\right)^2}\ge5+\dfrac{15}{4}.\dfrac{1}{\left(\dfrac{1}{2}\right)^2}=20\)Đẳng thức xảy ra \(\left\{{}\begin{matrix}x^2=\dfrac{1}{16}x^2\\y^2=\dfrac{1}{16}y^2\\x+y=1\\x,y>0\end{matrix}\right.\Leftrightarrow x=y=\dfrac{1}{2}\)

Vậy \(MinM=20\)

Nguyệt Trần
Xem chi tiết
Unruly Kid
26 tháng 11 2017 lúc 18:31

https://hoc24.vn/hoi-dap/question/486195.html

Thanh Đặng
Xem chi tiết
Hoc24h
Xem chi tiết
Nguyễn Hoàng Minh
6 tháng 10 2021 lúc 10:08

Áp dụng BĐT cosi cho \(x,y>0\)

\(M=x+y+\dfrac{1}{x}+\dfrac{1}{y}\ge2\sqrt{x\cdot\dfrac{1}{x}}+2\sqrt{y\cdot\dfrac{1}{y}}=4\)

Dấu \("="\Leftrightarrow x=y=1\)

Mà \(x+y=2\le\dfrac{4}{3}\left(vô.lí\right)\) nên dấu \("="\) không xảy ra

Vậy M không có GTNN