1) cho các số thực dương a,b thỏa mãn \(3a+b\le1\). Tìm Min của \(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\)
2) Với hai số thực a,b không âm thỏa mãn \(a^2+b^2=4\). Tìm Max \(M=\dfrac{ab}{a+b+2}\)
3) Cho x,y khác 0 thỏa mãn \(\left(x+y\right)xy=x^2+y^2-xy\). Tìm Max \(A=\dfrac{1}{x^3}+\dfrac{1}{y^3}\)
Cho x,y,z> 0 và xy+yz+xz =1 . Tìm Min B = \(x^2+y^2+az^2\) (a>0)
Tìm GTNN của các biểu thức sau:
1) Cho x,y >0
Tìm Min P= \(\frac{x+y}{\sqrt{xy}}+\frac{\sqrt{xy}}{x+y}\)
2) Cho x, y, z >0 và x+y+z ≤ \(\frac{3}{4}\)
Tìm Min P= \(\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{z}+\sqrt{x}\right)\)+ \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
3) Cho a,b >0 và a+b≥3
Tìm Min P=\(a+b+\frac{1}{2a}+\frac{2}{b}\)
Cho x,y,z>0 và \(x+y+z\le\dfrac{3}{4}\). Tìm Min A = \(\Sigma\dfrac{x^3}{\sqrt{y^2+3}}\)
Cho x,y,z> 0 và xy+yz+xz = 3xyz . Tìm MaxP = \(\Sigma\dfrac{yz}{x^3\left(z+2y\right)}\)
1. a) Tìm \(n\in N\)*, \(n>2008\) sao cho \(2^{2008}+2^{2012}+2^{2013}+2^{2014}+2^{2016}+2^n\) là số chính phương
b) tìm x,y > 0 thỏa mãn \(x^2+y^2=2\left(x+y\right)\left(\sqrt{x}+\sqrt{y}-2\right)\)
2. a) \(\left\{{}\begin{matrix}a\ge0\\a+b\ge1\end{matrix}\right.\). Min \(A=\frac{8a^2+b}{4a}+b^2\)
b) \(\left\{{}\begin{matrix}a,b\ge0\\\left(a-b\right)^2=a+b+2\end{matrix}\right.\). Cmr: \(\left(1+\frac{a^3}{\left(b+1\right)^3}\right)\left(1+\frac{b^3}{\left(b+1\right)^3}\right)\le9\)
c) \(x,y>0;\left(x+\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)=2020\). Min P = x + y
d) \(x,y,z>0;\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=6\). Min \(P=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
e) \(\left\{{}\begin{matrix}x,y,z>0\\x+y+z+4xyz=4\end{matrix}\right.\) Cmr: \(\left(1+xy+\frac{y}{z}\right)\left(1+yz+\frac{z}{x}\right)\left(1+zx+\frac{x}{y}\right)\ge27\)
f) \(\left\{{}\begin{matrix}x,y,z\ge1\\3x^2+4y^2+5z^2=52\end{matrix}\right.\). Min P = x + y + z
g) \(x,y>0\). Min \(P=\frac{2}{\sqrt{\left(2x+y\right)^3+1}-1}+\frac{2}{\sqrt{\left(x+2y\right)^3+1}-1}+\frac{\left(2x+y\right)\left(x+2y\right)}{4}-\frac{8}{3\left(x+y\right)}\)
Cho x,y,z > 0 và xyz=8. Tìm Min P = \(\Sigma\dfrac{x^2}{\sqrt{\left(1+x^3\right)+\left(1+y^3\right)}}\)
Cho x,y,z>0 /xyz=8.
Tìm min P= \(\dfrac{x^2}{\sqrt{\left(1+x^3\right)\left(1+y^3\right)}}+\dfrac{y^2}{\sqrt{\left(1+y^3\right)\left(1+z^3\right)}}+\dfrac{z^2}{\sqrt{\left(1+z^3\right)\left(1+x^3\right)}}\)
Cho a,b,c>0 thỏa a+b+c=3. Tìm Max P \(\frac{2}{3+ab+bc+ca}+\frac{\sqrt{abc}}{6} +\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
Cho x,y,z>0 thỏa \(3x+y+z=x^2+y^2+z^2+2xy\) . Tìm Min P= \(\frac{20}{\sqrt{x+2}}+\frac{20}{\sqrt{y+2}}+x+y+z\)
1. Cho \(x,y,z>0\)\(xyz=1\)
Tìm min P= \(x+y+z+\frac{13}{3\left(xy+yz+zx\right)}\)
2. Cho \(a>0\)
Tìm min P= \(\frac{a^4+a^3+3a^2+a+1}{a^3+a}\)