1. Cho tam giác ABC vuông tại A có M là trung điểm của BC. Trên tia đối của MA lấy điểm N sao cho MN = MA
a, CM: tam giác AMB = tam giác NMC b, CM: tam giác AMC = tam giác NMB
c, CM: BN vuông góc với AB c, CM: CN // AB
2. Cho tam giác ABC có M, N lần lượt là trung điểm của AB, AC. Trên các tia đối của MC, NB lần lượt lấy các điểm E, F sao cho ME = MC, NF = NB.
a, CM: tam giác MBC = tam giác MAE b, CM: tam giác NBC = tam giác NFA
c, CM: AE // BC d, BC = AF
1.
Xét tam giác AMB và tam giác NMC có:
AM = NM (gt)
AMB = NMC (2 góc đối đỉnh)
MB = MC (M là trung điểm của BC)
=> Tam giác AMB = Tam giác NMC (c.g.c)
Xét tam giác AMC và tam giác NMB có:
AM = NM (gt)
AMC = NMB (2 góc đối đỉnh)
MC = MB (M là trung điểm của BC)
=> Tam giác AMC = Tam giác NMB (c.g.c)
2.
Xét tam giác AME và tam giác BMC có:
AM = BM (M là trung điểm của AB)
AME = BMC (2 góc đối đỉnh)
ME = MC (gt)
=> Tam giác AME = Tam giác BMC (c.g.c)
=> AEM = BCM (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong
=> AE // BC
Xét tam giác ANF và tam giác CNB có:
AN = CN (N là trung điểm của AC)
ANF = CNB (2 góc đối đỉnh)
NF = NB (gt)
=> Tam giác ANF = Tam giác CNB (c.g.c)
=> AF = CB (2 cạnh tương ứng)
Cho tam giác ABC vuông tại A, lấy M là trung điểm của BC. Trên tia đối của tia MA lấy N sao cho NM = MA.
a)CM : tam giác ABM= tam giác NMC
b)CM : CN vuông góc với AC
c) Vẽ AH vuông góc với BC. Phân giác của góc BAH cắt tia phân giác của góc BAH tại K. Tính góc AKC
CAU A: XÉT TAM GIÁC ABM VÀ NMC CÓ:
BM=MC; GÓC BMA= NMC;AM=MN TỪ TRÊN SUY RA TAM GIÁC ABM= NMC
CÂU B
1. Cho tam giác ABC vuông cân tại A. M là trung điểm của BC. Lấy điểm D bất kì thuộc BC.(D khác B , C , M). Gọi H và I là thứ tự chân đường vuông góc kẻ từ B , C xuống đường thảng AD. Đường thẳng AM cắt CI tại N. CMR :
a) BH song song CI
b) BH = AI
c) Tam giác HMI vuông cân
2.Cho tam giác ABC có AB = AC = BC. M là trung điểm của BC
a) CM : Tam giác AMB = Tam giác AMC
b) Trên tia đối của tia MA lấy điểm N sao cho M là trung điểm của AN. CM : Tam giác AMB = Tam giác NMC
c)Vẽ tia Ax vuông góc AM (AM thuộc nửa mặt phẳng bờ là đường thẳng AB chứa điểm C). Trên Ax lấy điểm P sao cho AP = AC. CM : P , N , C thẳng hàng.
3. Cho tam giác ABC vuông tại A , BD là tia phân giác của góc B ( D thuộc AC). Trên tia BC lấy điểm E sao cho BA = BE
a) CM : DE vuông góc BE
b) CM : BE là đường trung trực của AE.
c) Kẻ AH vuông góc BC. So sánh AH và EC
GIÚP MK VS NHA MN. BÀI HÌNH HỌC NÊN NHỜ MN VẼ HỘ MK CÁI HÌNH LUÔN NHA. mƠN MN NHÌU !!!!
KHÔNG THẤY HÌNH THÌ VÀO THỐNG KÊ HỎI ĐÁP NHA
A) VÌ \(BH\perp AD\Rightarrow\widehat{BHA}=90^o\)
\(CI\perp AD\Rightarrow\widehat{CID}=90^o\)
\(\Rightarrow\widehat{BHA}=\widehat{CID}=90^o\)hay \(\widehat{BHI}=\widehat{CIH}=90^o\)
HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU
=> BH // CI (ĐPCM)
B)
XÉT \(\Delta ABC\)VUÔNG TẠI A
\(\Rightarrow\widehat{A}=90^o\)hay \(\widehat{BAH}+\widehat{HAC}=90^o\left(1\right)\)
XÉT \(\Delta AHB\)VUÔNG TẠI H
\(\Rightarrow\widehat{H}=90^o\)hay \(\widehat{BAH}+\widehat{ABH}=180^o-90^o=90^o\left(2\right)\)
từ (1) và (2) \(\Rightarrow\widehat{HAC}=\widehat{ABH}\)
XÉT \(\Delta ABH\)VÀ\(\Delta CAI\)CÓ
\(\widehat{H}=\widehat{I}=90^o\)
AB = AC (gt)
\(\widehat{ABH}=\widehat{IAC}\)(CMT)
=>\(\Delta ABH\)=\(\Delta CAI\)(C-G-C)
=> BH = AI ( HAI CẠNH TƯƠNG ỨNG )
Cho tam giác ABC nhọn (AB< AC). Gọi M là trung điểm của BC. Trên tia AM lấy điểm N sao cho M là trung điểm của AN. a. Chứng minh tam giác AMB = tam giác NMC b. Vẽ AH vuông góc BC(H thuộc BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA. Chứng minh: tam giác ABI cân và BI = CN
a: Xét ΔAMB và ΔNMC có
MA=MN
góc AMB=góc NMC
MB=MC
Do đó: ΔAMB=ΔNMC
b: Xét ΔBAI có
BH vừa là đường cao, vừa là trung tuyến
nên ΔBAI cân tại B
=>BA=BI=CN
cho tam giác vuông vuông tại a có góc c = 30 độ . gọi m là trung điểm của bc , trên tia đối của tia MA lấy điểm d sao cho MD = MA .
a ) CM : △AMB = △DMC
b) CM : △ABC = △CDA
c) CM : △AMB là tam giác đều
Cho tam giác ABC vuông tại A có M là trung điểm của BC. Trên tia đối của tia MA lấy điểm N sao cho MN=MA. a) Chứng minh: AB = NC , tam giác CAN vuông b) Chứng minh: AM = 1/2 BC c) Kẻ MK vuông góc với BN , MI vuông góc với AC . CM I, M , K Thẳng hàng
a: Xét tứ giác ABNC có
M là trung điểm của BC
M là trung điểm của AN
Do đó: ABNC là hình bình hành
mà \(\widehat{CAB}=90^0\)
nên ABNC là hình chữ nhật
Suy ra: AB=NC và ΔCAN vuông tại C
b: Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên AM=1/2BC
a) Xét tam giác MAB và tam giác MCN có
MB =MC ( M là tđ BC)
AM =AN (gt)
AMB = CMD ( 2 góc đối đỉnh )
=> 2 tam giác = nhau (c-g-c)
=> AB =NC (2 cạnh tương ứng)
=> góc BAN = góc ANC (2 góc tương ứng)
mà 2 góc ở vị trí so le trong => AB // NC
=> A + C = 180 ( 2 góc trong cùng phía bù nhau)
=> 90 + c = 180 => góc C=90
xét tam giác ACN có góc C =90 => tma giác ACN vuông tại C
b) Xét tam giác ABC vuông tại A có M là trung điểm BC => AM là trung tuyến => AM = BM = CM =1/2 BC(tc)
c) ta xét tam giác BAN có : AM =MN => M là trung điểm của AN => BM là trung tuyến của AN
mà BM = AM (cmt ) => BM=AM=MN=1/2AN
=> tam giác ABN vuông tại B => AB vuông góc với BN
mà MK vuông góc với BN (gt)=> AB // MK ( từ vuông góc -> //)
mà AB vuông góc AC => MK vuông góc với AC (từ vuông góc -> //)
ta lại có MI cũng vuông góc với AC (gt)
=> M,K,I thẳng hàng (tiên đề ơ clits)
cho tam giác ABC vuông tại A. gọi M là trung điểm của BC. trên tia đối của tia MA lấy điểm E sao cho ME= MA. Chứng Minh rằng rằng:
a, tam giác AMB = tam giác EMC
b, AC vuông góc với CE
c, BC = 2.AM
Lời giải:
a.
Xét tam giác $AMB$ và $EMC$ có:
$\widehat{AMB}=\widehat{EMC}$ (đối đỉnh)
$AM=EM$
$MB=MC$
$\Rightarrow \triangle AMB=\triangle EMC$ (c.g.c)
b.
Vì $\triangle AMB=\triangle EMC$ nên $\widehat{MAB}=\widehat{MEC}$
Mà 2 góc này ở vị trí so le trong nên $EC\parallel AB$
Mà $AB\perp AC$ nên $EC\perp AC$ (đpcm)
c.
Vì $\triangle AMB=\triangle EMC$ nên:
$AB=EC$
Vì $EC\perp AC$ nên $\widehat{ECA}=90^0=\widehat{BAC}$
Xét tam giác $ECA$ và $BAC$ có:
$\widehat{ECA}=\widehat{BAC}=90^0$ (cmt)
$AC$ chung
$EC=BA$ (cmt)
$\Rightarrow \triangle ECA=\triangle BAC$ (c.g.c)
$\Rightarrow EA=BC$
Mà $EA=2AM$ nên $2AM=BC$ (đpcm)
Cho tam giác ABC nhọn (AB < AC).M là trung điểm của BC .trên tia AM lấy N sao cho M là trung điểm của AN
a . Cm tam giác AMB=Tam giác NMC
b vẽ CD vuông góc AB (D thuộc AB).so sánh góc BCN.tính góc DCN
c vẽ AH vuông góc BC (H thuộc BC) trên tia đối của tia của tia HA lấy điểm I sao cho HI = HA.C/m:BI=CN
Giúp với mọi người ơi
Mk cho link câu hỏi tương tự
cho tam giác abc vuông tại a , biết ab = 6 cm , ac = 8 cm . gọi m là trung điểm của bc trên tia đối của tia ma lấy điểm d sao cho md = ma . vẽ AH vuông góc với BC tại H trên tia đối của tia HA lấy điểm E sao cho HE = HA. chứng minh CA vuông góc với CD
em tự vẽ hình nha
xét △AMB và △DMC có:
BM = MC
AM = MD
góc AMB = góc DMC ( đối đỉnh )
=> △AMB = △DMC
=> góc ABM = góc DCM và ở vị trí sole trong
=> AB // CD
ta có AB vuông góc với AC
=> CD vuông góc với AC ( đpcm )