Bài 5: Trường hợp bằng nhau thứ ba của tam giác góc - cạnh - góc (g.c.g)

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Dương Hoàng

Cho tam giác ABC vuông tại A có M là trung điểm của BC. Trên tia đối của tia MA lấy điểm N sao cho MN=MA. a) Chứng minh: AB = NC , tam giác CAN vuông b) Chứng minh: AM = 1/2 BC c) Kẻ MK vuông góc với BN , MI vuông góc với AC . CM I, M , K Thẳng hàng

Nguyễn Lê Phước Thịnh
24 tháng 2 2022 lúc 21:50

a: Xét tứ giác ABNC có 

M là trung điểm của BC

M là trung điểm của AN

Do đó: ABNC là hình bình hành

mà \(\widehat{CAB}=90^0\)

nên ABNC là hình chữ nhật

Suy ra: AB=NC và ΔCAN vuông tại C

b: Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên AM=1/2BC

Người Vô Danh
24 tháng 2 2022 lúc 22:08

a) Xét tam giác MAB và tam giác MCN có 
MB =MC ( M là tđ BC)

AM =AN (gt)

AMB = CMD ( 2 góc đối đỉnh ) 

=> 2 tam giác = nhau (c-g-c) 

=> AB =NC (2 cạnh tương ứng)

=> góc BAN = góc ANC (2 góc tương ứng)

mà 2 góc ở vị trí so le trong => AB // NC 

=> A + C = 180 ( 2 góc trong cùng phía bù nhau) 

=> 90 + c = 180 => góc C=90 

xét tam giác ACN có góc C =90 => tma giác ACN vuông tại C

b) Xét tam giác ABC vuông tại A có M là trung điểm BC => AM là trung tuyến => AM = BM = CM =1/2 BC(tc) 

c) ta xét tam giác BAN có : AM =MN => M là trung điểm của AN => BM là trung tuyến của AN 

mà BM = AM (cmt ) => BM=AM=MN=1/2AN 

=> tam giác ABN vuông tại B => AB vuông góc với BN 

mà MK vuông góc với BN (gt)=> AB // MK ( từ vuông góc -> //)

mà AB vuông góc AC => MK vuông góc với AC (từ vuông góc -> //)

ta lại có MI cũng vuông góc với AC (gt)

=> M,K,I thẳng hàng (tiên đề ơ clits)

Người Vô Danh
24 tháng 2 2022 lúc 22:21

undefined


Các câu hỏi tương tự
Lan Vu
Xem chi tiết
CHICKEN RB
Xem chi tiết
Thanh Đinh văn
Xem chi tiết
Nguyễn Minh Đức
Xem chi tiết
phan châu trí
Xem chi tiết
Trâm Anh Huỳnh
Xem chi tiết
Tuấn Hoàng Minh
Xem chi tiết
Phương Thúy Ngô
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết