Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Ánh
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 2 2021 lúc 1:27

Đề thiếu dữ liệu để xác định độ dài SA rồi bạn

Buddy
Xem chi tiết
Bùi Nguyên Khải
21 tháng 8 2023 lúc 18:47

THAM KHẢO:

Bài tập 1 trang 56 Toán 11 tập 2 Chân trời

CD//AB nên góc giữa SB và CD là góc giữa AB và SB, \(\widehat{ABS}\)

CB//AD nên góc giữa SD và CB là góc giữa SD và AD, \(\widehat{ADS}\)

Ta có: tan\(\widehat{ABS}\)=tan\(\widehat{ADS}\)=\(\dfrac{a\sqrt{3}}{a}=\sqrt{3}\)

Suy ra \(\widehat{ABS}\)=\(\widehat{ADS}\)=\(\dfrac{\pi}{3}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 11 2019 lúc 18:28

Chọn C

Dựa vào giả thiết ta có B', C', D' lần lượt là hình chiếu của A lên SB, SC, SD.

Tam giác SAC vuông cân tại A nên C' là trung điểm của SC.

Trong tam giác vuông SAB' ta có:

Phạm Đức Huy
Xem chi tiết
Hoàng Tử Hà
18 tháng 4 2021 lúc 18:44

Đáy là hình vuông hay chữ nhật bạn? Hình chữ nhật sao có các cạnh bằng nhau và bằng a được? 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 5 2017 lúc 4:06

Nguyễn Thành Khang 14.
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 6 2021 lúc 17:54

Gọi H là trung điểm AB \(\Rightarrow SH\perp\left(ABCD\right)\)

\(\Rightarrow\) CH là hình chiếu vuông góc của SC lên (ABCD)

\(\Rightarrow\widehat{SCH}=60^0\)

Do \(\widehat{ABD}=60^0\Rightarrow\) các tam giác ABD và BCD là tam giác đều cạnh a

\(\Rightarrow\widehat{ABC}=120^0\)

Áp dụng định lý hàm cos cho tam giác BCH:

\(CH=\sqrt{BC^2+BH^2-2BC.BH.cos120^0}=\dfrac{a\sqrt{7}}{2}\)

\(\Rightarrow SH=CH.tan60^0=\dfrac{a\sqrt{21}}{2}\)

\(V=\dfrac{1}{3}SH.2S_{ABD}=\dfrac{1}{3}.\dfrac{a\sqrt{21}}{2}.2.\dfrac{a^2\sqrt{3}}{4}=\dfrac{a^3\sqrt{7}}{8}\)

Lan Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 3 2023 lúc 9:55

Chọn D

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 9 2017 lúc 14:46

Chọn A.

Gọi H là trung điểm của CD, M là trung điểm của BC. Khi đó HM ⊥ BC, SM  ⊥ BC. Dễ thấy tam giác HBC vuông cân ở H, do đó tính được BC, SM. Từ đó tính được SH.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 4 2019 lúc 9:52

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 1 2018 lúc 4:00

Chọn A

Phương pháp:

+ Xác định chiều cao của hình chóp bằng cách sử dụng: Nếu SA = SB = SC thì S thuộc trục đường tròn ngoại tiếp tam giác ABC hay chân đường cao hạ từ S xuống (ABC) trùng với tâm đường tròn ngoại tiếp

tam giác . ABC 

+ Tính chiều cao SH dựa vào định lý Pyatgo

 

+ Tính thể tích theo công thức  với h là chiều cao hình chóp, S là diện tích đáy. 

 

Cách giải: 

Vì ABCD là hình thoi nên AB = BC mà   nên ABC là

tam giác đều cạnh a. 

Gọi H là trọng tâm tam giác ABC, O là giao điểm hai đường chéo hình thoi.

Vì SA = SB = SC nên S thuộc trục đường tròn ngoại tiếp tam giác ABC hay chân đường cao hạ từ S xuống (ABC) trùng với tâm đường tròn ngoại tiếp H của tam giác ABC. Hay  

+ Vì ABC đều cạnh a tâm H nên