Xác định hệ số của x 13 trong khai triển của x + 2 x 2 10 .
A. 180.
B. 3360.
C. 960.
D. 5120.
Xác định hệ số của \({x^4}\) trong khai triển biểu thức \({\left( {3x + 2} \right)^5}\)
+) Ta có:
\(\begin{array}{l}{\left( {3x + 2} \right)^5} = {\left( {3x} \right)^5} + 5.{\left( {3x} \right)^4}2 + 10.{\left( {3x} \right)^3}{2^2} + 10{\left( {3x} \right)^2}{.2^3} + 5.\left( {3x} \right){.2^4} + {2^5}\\ = 243{x^5} + 810{x^4} + 1080{x^3} + 720{x^2} + 240x + 32\end{array}\)
+) Hệ số của \({x^4}\) trong khai triển trên là: \({a_4} = 810\)
1. Tìm hệ số của số hạng \(x^4\) trong khai triển \(\left(x-3\right)^9\)
2. Tìm hệ số của số hạng chứa \(x^{12}y^{13}\) trong khai triển \(\left(2x+3y\right)^{25}\)
3. Tìm hệ số của số hạng chứa \(x^4\) trong khai triển \(\left(\dfrac{x}{3}-\dfrac{3}{x}\right)^{12}\)
4. Tìm hệ số của số hạng không chứa x trong khai triển \(\left(x^2-\dfrac{1}{x}\right)^6\)
5. Tìm hệ số của số hạng không chứa x trong khai triển \(\left(x+\dfrac{1}{x^4}\right)^{10}\)
Xác định hệ số của số hạng chứa \(x^4\) trong khai triển \(\left(x^2-\dfrac{2}{n}\right)^n\) nếu biết tổng các hệ số của ba số hạng đầu trong khai triển đó bằng 97 ?
\(\left(x^2+1-x^3\right)^8\) xác định hệ số x8 trong khai triển
\(\left(x^2+1-x^3\right)^8=\sum\limits^8_{k=0}C^k_8.\left(x^2-x^3\right)^k\)
\(=\sum\limits^8_{k=0}C^k_8\sum\limits^k_{i=0}C^i_k.\left(x^2\right)^{k-i}\left(x^3\right)^i\)
\(=\sum\limits^8_{k=0}\sum\limits^k_{i=0}C^k_8C^i_k.x^{2k+i}\)
\(\Rightarrow2k+i=8\)
Ta có: \(\left\{{}\begin{matrix}2k+i=8\\i\in N\\k\in N\\0\le i\le k\le8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}i=2\\k=3\end{matrix}\right.\)
\(\Rightarrow\) Hệ số của \(x^8\) trong khai triển là \(C^3_8C^2_3=168\).
a. Tìm hệ số của x trong khai triển ( x2 - \(\dfrac{2}{x}\) )8
b. Cho cấp số cộng (un ) có u12= 17 , S12 = 72 . Xác định giá trị của u1 , công sai d.
a, \(\left(x^2-\dfrac{2}{x}\right)^8=\sum\limits^8_{k=0}C^k_8.x^{16-2k}.\dfrac{\left(-2\right)^k}{x^k}\)
\(=\sum\limits^8_{k=0}C^k_8.\left(-2\right)^k.x^{16-3k}\)
\(16-3k=1\Leftrightarrow k=5\)
\(\Rightarrow\) Hệ số của x trong khai triển là \(C^5_8.\left(-2\right)^5=-1792\)
b, \(\left\{{}\begin{matrix}u_{12}=17\\S_{12}=72\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u_1+11d=17\\\dfrac{12.\left(u_1+u_{12}\right)}{2}=72\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u_1+11d=17\\u_1+17=12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}d=2\\u_1=-5\end{matrix}\right.\)
Xét khai triển \(\left(2x+\frac{1}{x}\right)^{20}\)
a) Viết số hạng thứ k + 1 trong khai triển
b) Số hạng nào trong khai triển không chứa x
c) Xác định hệ số \(x^4\)trong khai triển
Cái này tui chưa học đâu nha bạn iu
kkakakkakakakaka
15. Số hạng chính giữa trong khai triển (3x + 2y)^4 là?
18. Tìm hệ số của x^7 trong khai triển : h(x)= x(2 + 3x)^9 là?
19. Tìm hệ số của x^7 trong khai triển g(x)= (1+x)^7 + (1-x)^8 + (2+x)^9 là?
15/ Mũ 4=> có 4+1=5 số hạng=> số hạng chính giữa là: \(C^2_4.3^{4-2}.x^2.2^2y^2=58x^2y^2\)
18/ \(x.x^k=x^7\Rightarrow k=6\)
\(C^6_9.3^6.2^3=489888\)
19/ \(C^7_7+C^7_8.\left(-1\right)^7+C^7_9.2^2=...\)
Biết tổng các hệ số của ba số hạng đầu trong khai triển \(\left(x^3+\dfrac{1}{x^2}\right)^n\) bằng 11. Tìm hệ số của \(x^7\) trong khai triển đó.
\(C_n^0+C_n^1+C_n^2=11\)
\(\Rightarrow1+n+\dfrac{n\left(n-1\right)}{2}=11\)
\(\Leftrightarrow n^2+n-20=0\Rightarrow\left[{}\begin{matrix}n=4\\n=-5\left(loại\right)\end{matrix}\right.\)
\(\left(x^3+\dfrac{1}{x^2}\right)^4\) có SHTQ: \(C_4^k.x^{3k}.x^{-2\left(4-k\right)}=C_4^k.x^{5k-8}\)
\(5k-8=7\Rightarrow k=3\)
Hệ số: \(C_4^3=4\)
a)Tìm số hạng không chứa x trong khai triển (x+2/x)10
b)Tìm số hạng không chứa x trong khai triển (x+2/x2)6
c)Tìm hệ số của số hạng chứa x10 trong khai triển (3x3-2/x2)5
a: SHTQ là: \(C^k_{10}\cdot x^{10-k}\cdot\left(\dfrac{2}{x}\right)^k=C^k_{10}\cdot2^k\cdot x^{10-2k}\)
Số hạng ko chứa x tương ứng với 10-2k=0
=>k=5
=>SH đó là 8064
b: SHTQ là; \(C^k_6\cdot x^{6-k}\cdot\left(\dfrac{2}{x^2}\right)^k=C^k_6\cdot2^k\cdot x^{6-3k}\)
Số hạng ko chứa x tương ứng với 6-3k=0
=>k=2
=>Số hạng đó là 60
c: SHTQ là: \(C^k_5\cdot\left(3x^3\right)^{5-k}\cdot\left(-\dfrac{2}{x^2}\right)^k\)
\(=C^k_5\cdot3^{5-k}\cdot\left(-2\right)^k\cdot x^{15-5k}\)
SH chứa x^10 tương ứng với 15-5k=10
=>k=1
=>Hệ số là -810