Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Rhider
Xem chi tiết
Nguyễn An
Xem chi tiết
Nguyễn Hoàng Minh
23 tháng 9 2021 lúc 22:18

Áp dụng BĐT cosi:

\(\left(a+\dfrac{1}{a}\right)\left(b+\dfrac{1}{b}\right)4=ab+\dfrac{a}{b}+\dfrac{b}{a}+\dfrac{1}{ab}\\ \ge ab+\dfrac{1}{ab}+2\sqrt{\dfrac{a}{b}\cdot\dfrac{b}{a}}=ab+\dfrac{1}{ab}+2\)

Áp dụng tiếp BĐT cosi:

\(ab+\dfrac{1}{ab}=\left(16ab+\dfrac{1}{ab}\right)-15ab\\ \ge2\sqrt{\dfrac{16ab}{ab}}-15ab=8-15ab\\ \ge8-15\cdot\dfrac{a+b}{4}=8-15\cdot\dfrac{1}{4}=\dfrac{17}{4}\)

\(\Leftrightarrow ab+\dfrac{a}{b}+\dfrac{b}{a}+\dfrac{1}{ab}\ge\dfrac{17}{4}+2=\dfrac{25}{4}\)

Dấu \("="\Leftrightarrow a=b=\dfrac{1}{2}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 11 2017 lúc 16:04

Đáp án A

Ta có  P = 1 2 . 1 - log a b log a b - 1 2 = 1 - 2 2 2 - 1 .

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 7 2017 lúc 14:46

Đáp án A

Ta có

Đàm Mạnh Dũng
Xem chi tiết
Nguyễn Anh Quân
7 tháng 11 2017 lúc 19:50

Ta có : (a-b)^2 >= 0 với mọi a,b

<=> a^2-2ab+b^2 >= 0

<=> a^2+b^2 >= 2ab

<=> a^2+2ab+b^2 >= 4ab

<=> (a+b)^2 >= 4ab

Với a,b > 0 thì ta chia 2 vế cho ab .(+b) được :

a+b/ab >= 4/a+b

<=>1/a + 1/b >=4ab

Áp dụng bđt trên thì A >= 4/(a^2+b^2+2ab) = 4/(a+b)^2 >= 4/1^2 = 4

Dấu "=" xảy ra <=> a=b ; a+b =1  <=> a=b=1/2

Vậy Min A = 4 <=> x = y= 1/2

Đinh Anh Tài
19 tháng 4 2022 lúc 20:04

`a+ble1<=>(a+b)^2le1`

Áp dụng bđt `1/(a)+1/bge4/(a+b)` ta có:

`Age4/(a^2+2ab+b^2)=4/(a+b)^2=4/1=4`

Dấu `=` xảy ra khi:`a^2+b^2=2ab<=>(a-b)^2=0<=>a=b` và `a+b=1`

`<=>a=b=1/2`

Vậy GTNN của `A=4` khi và chỉ khi `a=b=1/2` 

vang giùn
Xem chi tiết
Ronaldo
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 8 2021 lúc 20:56

\(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}=\dfrac{a^2+b^2+2}{a^2b^2+a^2+b^2+1}=1-\dfrac{a^2b^2-1}{a^2b^2+a^2+b^2+1}\ge1-\dfrac{a^2b^2-1}{a^2b^2+2ab+1}=\dfrac{2}{ab+1}\)

Dấu "=" xảy ra khi \(a=b\) hoặc \(ab=1\)

missing you =
2 tháng 8 2021 lúc 21:02

\(< =>VT< =>\dfrac{a^2+b^2+2}{\left(1+a^2\right)\left(1+b^2\right)}=\dfrac{a^2+b^2+2}{a^2+a^2b^2+b^2+1}\)

\(VT\ge VP\)(giả thiết)

\(< =>\dfrac{a^2+b^2+2}{a^2+a^2b^2+b^2+1}\ge\dfrac{2}{1+ab}\)

\(< =>a^2+b^2+2+a^3b+ab^3+2ab-2a^2-2b^2-2a^2b^2-2\ge0\)

\(< =>\left(a-b^{ }\right)^2\left(ab-1\right)\ge0\)(luôn đúng với mọi a,b là các số thực dương thỏa mãn \(ab\ge1\))

\(\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 4 2018 lúc 16:54

Đổi về cơ số a có

log a b a b = log a a b log a a b = 1 2 1 + log a b 1 - log a b = 1 2 ( 1 + 2 ) 1 - 2 = - 3 2

Chọn đáp án A.

Cris devil gamer
Xem chi tiết
Sói~Trăng~cute
2 tháng 2 2019 lúc 20:17

bạn là fan của Cris phải ko

tth_new
3 tháng 2 2019 lúc 7:08

Áp dụng BĐT Cauchy-Schwarz dạng Engel,ta có:

\(A=\frac{a^2}{a+1}+\frac{b^2}{b+1}\ge\frac{\left(a+b\right)^2}{a+b+2}=\frac{1}{1+2}=\frac{1}{3}^{\left(đpcm\right)}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a+b=1\\\frac{a}{a+1}=\frac{b}{b+1}\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=1\\ab+a=ab+b\end{cases}}\Leftrightarrow a=b=\frac{1}{2}\)

Vậy ...

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 9 2018 lúc 18:10

Đáp án A

Ta có:  P = log a b b a = 2 log a b b a

= 2 log a b b − log a b a = 2 1 log b a b − 1 2 log a b a

= 2 1 1 + log b a − 1 2 . 1 log a a b = 2 1 1 + 1 log a b − 1 2 . 1 1 + log a b = 2 1 1 + 1 5 − 1 2 . 1 1 + 5 = 11 − 3 5 4