Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Danh Gia Bảo
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 12 2018 lúc 9:24

Trần Thu Trang
Xem chi tiết
Giản Hạ Thủy
2 tháng 12 2016 lúc 12:25

đặt t = lnx

tôi ko biết \(\varepsilon\) trong bài là gì, tuy nhiên nếu nó là số bất kì thì xét 2 TH sau để biết đk t

TH1: \(\varepsilon\in\left(0;1\right)\)

TH2: \(\varepsilon>1\)

Trung Cao
27 tháng 2 2017 lúc 10:11

Tích phân

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 1 2017 lúc 10:48

Đáp án A.

Nguyễn Thành Trung
Xem chi tiết
Đặng Minh Quân
6 tháng 4 2016 lúc 15:41

\(I=\frac{1}{4}\int\limits^e_1\frac{4\ln^2x-1+1}{x\left(1+2\ln x\right)}dx=\frac{1}{4}\int\limits^e_1\frac{\left(2\ln x-1\right)dx}{x}+\frac{1}{4}\int\limits^e_1\frac{dx}{x\cdot\left(1+2\ln x\right)}\)

  \(=\frac{1}{8}\int\limits^e_1\left(2\ln x-1\right)d\left(2\ln x-1\right)+\frac{1}{8}\int\limits^e_1\frac{d\left(2\ln x+1\right)}{\left(1+2\ln x\right)}\)

   \(=\left(\frac{1}{16}\left(2\ln x-1\right)^2\right)|^e_1+\frac{1}{8}\ln\left|\left(1+2\ln x\right)\right||^e_1\)

    \(=\frac{1}{8}\ln3\)

Nguyễn Thanh Hải
Xem chi tiết
Hoàng Thị Tâm
4 tháng 4 2016 lúc 21:12

\(\int\limits^2_1\frac{\ln\left(x+1\right)}{x^2}dx=-\frac{\ln\left(x+1\right)}{x^2}+\int\limits^2_1\frac{1}{x\left(x+1\right)}dx=\ln2-\frac{\ln3}{2}+\int\limits^2_1\left(\frac{1}{x}-\frac{1}{x+1}\right)dx\)

                   \(=\ln2-\frac{\ln3}{2}+\ln\left(\frac{x}{x+1}\right)|^2_1=\ln2-\frac{\ln3}{2}-\ln3=\frac{\ln2-3\ln3}{2}\)

Phạm Trần Phát
Xem chi tiết
2611
18 tháng 11 2023 lúc 21:18

`a)TXĐ:R\\{1;1/3}`

`y'=[-4(6x-4)]/[(3x^2-4x+1)^5]`

`b)TXĐ:R`

`y'=2x. 3^[x^2-1] ln 3-e^[-x+1]`

`c)TXĐ: (4;+oo)`

`y'=[2x-4]/[x^2-4x]+2/[(2x-1).ln 3]`

`d)TXĐ:(0;+oo)`

`y'=ln x+2/[(x+1)^2].2^[[x-1]/[x+1]].ln 2`

`e)TXĐ:(-oo;-1)uu(1;+oo)`

`y'=-7x^[-8]-[2x]/[x^2-1]`

Akai Haruma
18 tháng 11 2023 lúc 21:27

Lời giải:
a.

$y'=-4(3x^2-4x+1)^{-5}(3x^2-4x+1)'$

$=-4(3x^2-4x+1)^{-5}(6x-4)$

$=-8(3x-2)(3x^2-4x+1)^{-5}$

b.

$y'=(3^{x^2-1})'+(e^{-x+1})'$

$=(x^2-1)'3^{x^2-1}\ln 3 + (-x+1)'e^{-x+1}$

$=2x.3^{x^2-1}.\ln 3 -e^{-x+1}$

c.

$y'=\frac{(x^2-4x)'}{x^2-4x}+\frac{(2x-1)'}{(2x-1)\ln 3}$

$=\frac{2x-4}{x^2-4x}+\frac{2}{(2x-1)\ln 3}$

d.

\(y'=(x\ln x)'+(2^{\frac{x-1}{x+1}})'=x(\ln x)'+x'\ln x+(\frac{x-1}{x+1})'.2^{\frac{x-1}{x+1}}\ln 2\)

\(=x.\frac{1}{x}+\ln x+\frac{2}{(x+1)^2}.2^{\frac{x-1}{x+1}}\ln 2\\ =1+\ln x+\frac{2^{\frac{2x}{x+1}}\ln 2}{(x+1)^2}\)

e.

\(y'=-7x^{-8}-\frac{(x^2-1)'}{x^2-1}=-7x^{-8}-\frac{2x}{x^2-1}\)

Võ Bình Minh
Xem chi tiết
Quỳnh Như Trần Thị
Xem chi tiết