Một chất điểm dao động điều hoà dọc theo trục Ox với phương trình: x = 2 cos 2 π t - π 2 c m (t đo bằng giây). Quãng đường vật đi được từ thời điểm t 1 = 17 24 ( s ) đến thời điểm t 2 = 25 8 ( s ) là
A. 16,6 cm
B. 18,3 cm
C. 19,27 cm
D. 20 cm
Một chất điểm dao động điều hoà dọc theo trục Ox. Phương trình dao động là x = 5cos(πt+π/6) cm. Quãng đường vật đi từ thời điểm ban đầu tới thời điểm t = 343/36 s là
A. 100,437 cm. B. 97,198 cm. C. 96,462 cm. D. 89, 821cm
Một vật dao động điều hoà dọc theo trục Ox với phương trình: x = 10cos(πt - π/6 ) cm. Quãng đường vật đi được từ thời điểm t1 = 0,5s đến thời điểm t2 = 1s
A. 17,3cm
B. 13,7 cm
C. 3,66cm
D. 6,34 cm
Một vật dao động điều hoà dọc theo trục Ox với phương trình : x = 10cos(πt - π/6 )cm. Quãng đường vật đi được từ thời điểm t1 = 0,5 s đến thời điểm t2 = 1 s
A. 17,3cm.
B. 13,7 cm.
C. 3,66cm.
D. 6,34 cm
Đáp án B
Phương pháp: Sử dụng đường tròn lượng giác
Cách giải:
Chu kỳ dao động T = 2s
Quan sát trên hình vẽ ta thấy quãng đường vật đi được từ thời điểm t1 = 0,5s ứng với vị trí (1) đến thời điểm t2 = 1s ứng với vị trí (2) là: (5 + 5 3 ) = 13,7cm
Một vật dao động điều hòa dọc theo trục Ox với phương trình vận tốc là overline v = 16π cos(4πt - π/6) cm/ s . Xác định thời điểm lần thứ 2023 vật chuyển động nhanh dần qua vị trí x =2 kể từ lúc bắt đầu dao động
Từ pt \(v=16\pi\cos\left(4\pi t-\dfrac{\pi}{6}\right)=16\pi\cos\left(4\pi t-\dfrac{2\pi}{3}+\dfrac{\pi}{2}\right)\) (cm/s), ta suy ra \(\omega=4\pi\left(rad/s\right)\), lại có \(\omega A=16\pi\Leftrightarrow A=\dfrac{16\pi}{\omega}=4\left(cm\right)\)
\(\varphi_0=-\dfrac{2\pi}{3}\); \(T=\dfrac{2\pi}{\omega}=0,5\left(s\right)\)
Đường tròn lượng giác:
Từ đây, ta có thể thấy tại thời điểm lần thứ 2023 vật chuyển động qua vị trí \(x=2\) kể từ khi dao động, góc quét của vật là \(\Delta\varphi=\dfrac{\pi}{3}+1011.2\pi=\dfrac{6067}{3}\pi\) (rad)
Thời điểm lần thứ 2023 vật chuyển động qua vị trí \(x=2\) kể từ lúc bắt đầu dao động là \(\Delta t=\dfrac{\Delta\varphi}{2\pi}.T=\dfrac{\dfrac{6067}{3}\pi}{2\pi}.0,5=\dfrac{6067}{12}\approx505,58\left(s\right)\)
Một vật dao động điều hoà dọc theo trục Ox với phương trình x = Asinωt . Pha dao động ban đâu ( ở thời điểm t = 0 s) là
A. π
B. − π 2
C. π 2
D. 0
Một vật dao động điều hòa dọc theo trục Ox với phương trình dao động là x = 4 cos ( 2 πt - π / 3 ) cm (t tính bằng s). Lấy π 2 = 10 . Gia tốc của vật khi có li độ bằng 3 cm là
A. ‒12 cm/s2
B. 120 cm/s2
C. ‒1,2 cm/s2
D. ‒60 cm/s2
Một chất điểm dao động điều dọc theo trục Ox với phương trình x = 10cos 2 pi t. Quãng đường đi được của chất điểm trong một chu kì dao động là ?
1 chu kì đi đc 4A=40 (đề bài bạn ko ghi đơn vị)
Một chất điểm dao động điều hoà dọc theo trục Ox với phương trình: x = 8 cos 4 π t + π 6 (t đo bằng giây). Quãng đường vật đi được từ thời điểm t 1 = 2 , 375 ( s ) đến thời điểm t 2 = 4 , 75 ( s ) là
A. 149cm
B. 146cm
C. 156cm
D. 159cm
Một chất điểm dao động điều hoà dọc theo trục Ox. Phương trình dao động là x = 3cos (10t - π/3) cm. Sau khoảng thời gian t = 0,157 s, kể từ lúc vật bắt đầu chuyển động (t = 0), quãng đường vật đi được là:
A. 1,5 cm. B. 4,5 cm. C. 4,1 cm. D. 1,9 cm.
Đáp án D
Bạn dùng vòng tròn để giải :
- Lúc t = 0 vật qua vị trí 1,5 cm theo chiều +, góc hợp với OX là \(\frac{\pi}{3}\)
- khi t = 0,157 s = \(\frac{\pi}{20}\) thì trên vòng tròn nó sẽ quét được góc \(\frac{\pi}{2}\) vậy góc hợp với trục ox là \(\frac{\pi}{6}\)
Vậy x = 1,5 \(\sqrt{3}\)
=> S = 1,5 + (3 - 1,5 \(\sqrt{3}\)) = 1,9
\(T=\frac{2\pi}{\omega}=\frac{157}{250}s\)
\(\Delta t=\frac{157}{1000}=\frac{T}{4}=\frac{T}{12}+\frac{T}{6}\)
Tại thời điểm t=0s vật ở vị trí \(x=\frac{A}{2}=1,5cm\) đi theo chiều âm của trục tọa độ.
Vậy quãng đường vật đi được là
\(S=\frac{A}{2}+\frac{A\sqrt{3}}{2}=\frac{3+3\sqrt{3}}{2}=4,098\approx4,1\) cm
Vậy C đúng