Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Tỉnh
Xem chi tiết
Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 8 2023 lúc 23:10

a: \(log_49=\dfrac{log9}{log4}=\dfrac{log3^2}{log2^2}=\dfrac{2\cdot log3}{2\cdot log2}=\dfrac{log3}{log2}=\dfrac{b}{a}\)

b: \(log_612=\dfrac{log12}{log6}=\dfrac{log2^2+log3}{log2+log3}=\dfrac{2\cdot log2+log3}{log2+log3}\)

\(=\dfrac{2a+b}{a+b}\)

c: \(log_56=\dfrac{log6}{log5}=\dfrac{log\left(2\cdot3\right)}{log\left(\dfrac{10}{2}\right)}=\dfrac{log2+log3}{log10-log2}\)

\(=\dfrac{a+b}{1-a}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 11 2018 lúc 8:06

Đáp án A.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 9 2017 lúc 2:43

Chọn B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 8 2017 lúc 3:16

Đáp án D.

Ta có

log   6125 7 = log   6125 + log 7 = log 7 2 . 125 + 1 2 log   7

= 5 2 log   7 + log   5 3 = 5 2 n + 3 log   5 = 5 2 n + 3 1 - log   2

= 5 2 n + 3 - 3 m .

Buddy
Xem chi tiết
Hà Quang Minh
24 tháng 8 2023 lúc 0:46

\(a,A=log_23\cdot log_34\cdot log_45\cdot log_56\cdot log_67\cdot log_78\\ =log_28\\ =log_22^3\\ =3\\ b,B=log_22\cdot log_24...log_22^n\\ =log_22\cdot log_22^2...log_22^n\\ =1\cdot2\cdot...\cdot n\\ =n!\)

Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 8 2023 lúc 8:04

\(log_{12}21=\dfrac{log_321}{log_312}=\dfrac{log_3\left(7\cdot3\right)}{log_3\left(2^2\cdot3\right)}=\dfrac{log_37+log_33}{log_34+log_33}\)

\(=\dfrac{log_37+1}{log_32^2+1}=\dfrac{log_37+1}{2\cdot log_32+1}=\dfrac{b+1}{2a+1}\)

Thị Thanh Thảo Tô
Xem chi tiết
Akai Haruma
11 tháng 8 2017 lúc 3:34

Lời giải:

Sử dụng công thức \(\log_ab=\frac{\ln b}{\ln a}\)

\(\Rightarrow A=\frac{\ln 2}{\ln 3}.\frac{\ln 3}{\ln 4}.\frac{\ln 4}{\ln 5}....\frac{\ln 15}{\ln 16}\)

\(\Leftrightarrow A=\frac{\ln 2}{\ln 16}=\log_{16}2=\frac{1}{4}\)

Đáp án C.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 3 2018 lúc 13:48

Như Quỳnh
Xem chi tiết
Akai Haruma
12 tháng 11 2018 lúc 19:58

Bài 1:

\(A=\log_380=\log_3(2^4.5)=\log_3(2^4)+\log_3(5)\)

\(=4\log_32+\log_35=4a+b\)

\(B=\log_3(37,5)=\log_3(2^{-1}.75)=\log_3(2^{-1}.3.5^2)\)

\(=\log_3(2^{-1})+\log_33+\log_3(5^2)=-\log_32+1+2\log_35\)

\(=-a+1+2b\)

Akai Haruma
12 tháng 11 2018 lúc 20:05

Bài 2:

\(\log_{30}8=\frac{\log 8}{\log 30}=\frac{\log (2^3)}{\log (10.3)}=\frac{3\log2}{\log 10+\log 3}\)

\(=\frac{3\log (\frac{10}{5})}{1+\log 3}=\frac{3(\log 10-\log 5)}{1+\log 3}=\frac{3(1-b)}{1+a}\)

Akai Haruma
13 tháng 11 2018 lúc 8:35

Bài 3:

\(\log_{27}5=a; \log_87=b; \log_23=c\)

\(\Leftrightarrow \frac{\ln 5}{\ln 27}=a; \frac{\ln 7}{\ln 8}=b; \frac{\ln 3}{\ln 2}=c\)

\(\Leftrightarrow \frac{\ln 5}{\ln (3^3)}=a; \frac{\ln 7}{\ln (2^3)}=b; \ln 3=c\ln 2\)

\(\Leftrightarrow \frac{\ln 5}{3\ln 3}=a; \frac{\ln 7}{3\ln 2}=b; \ln 3=c\ln 2\)

\(\Rightarrow \frac{\ln 5}{3c\ln 2}=a; \frac{\ln 7}{3\ln 2}=b\)

\(\Rightarrow \ln 35=\ln 5+\ln 7=3ac\ln 2+3b\ln 2\)

Do đó:
\(D=\log_6 35=\frac{\ln 35}{\ln 6}=\frac{\ln 35}{\ln 2+\ln 3}=\frac{\ln 35}{\ln 2+c\ln 2}=\frac{3ac\ln 2+3b\ln 2}{\ln 2+c\ln 2}\)

\(=\frac{3ac+3b}{1+c}\)