Cho log 2 = a , log 3 = b . Biểu diễn log 625 270 theo a và b là:
A. 1 4 3 b + 1 1 - a
B. a + 2 b 2 3 a 1 - b
C. a + b 2 4 a 1 - b
D. a + b 2 2 a 1 - b
Cho a,b là các số thực thỏa mãn log 2 . log 2 a - log b = 2 . Hỏi a,b thỏa mãn hệ thức nào dưới đây?
A. a = 100b
B. a = 100 - b
C. a = =100 + b
D. a = 100 b
rút gọn biểu thức sau
\(\left(log_a^b+log^a_b+2\right)\left(log_a^b-log^a_{ba}\right)log^a_b-1\)
cho \(log_2^3=a;log_2^5=b\) tính \(log^{600}_2\)
Giả sử a,b là các số thực sao cho x 3 + y 3 = a 10 3 x + b 10 2 x đúng với mọi các số thực dương x, y, z thỏa mãn log ( x + y ) = z và log ( x 2 + y 2 ) = z + 1 . Giá trị của a+b bằng
A. -31/2
B. -25/2
C. 31/2
D. 29/2
so sánh \(log^3_{3+2\sqrt{2}}\) và \(log^{\frac{1}{2}}_{5\sqrt{2}-7}\)
Cho các số thực dương a, b với a≠1 và log a b >0. Khẳng định nào sau đây là đúng?
A. 0 < a , b < 1 0 < a < 1 < b
B. 0 < a , b < 1 1 < a , b
C. 0 < a , b < 1 0 < b < 1 < a
D. 0 < b < 1 < a 1 < a , b
cho \(log_2^{27}=a\). hãy tính \(log^{\sqrt[6]{2}}_{\sqrt{3}}\)
Cho a = log 2 7 , b = log 5 7 . Giá trị của log 7 bằng
A. a b a + b
B. 1 a + b
C. a + b
D. a + b a b