Tổng các nghiệm của phương trình s i n 2 2 x + s i n 2 4 x = 3 2 trên đoạn [0, π 2 ] là:
A. 7 π 4
B. 3 π 4
C. π
D. 5 π 4
\(\text{Chứng minh phương trình sau luôn có nghiệm: a c o s 2 x + b s i n x + c o s x = 0}\)
\(\text{Đặt f (x)= a.cos2x+b.sinx+cosx}\)
\(\text{Hàm f (x) xác định và liên tục trên R}\)
\(\text{f ( π /4 ) = b √2 /2 + √2 /2 }\)
\(\text{f ( 5/π4 ) = − b √ 2/ 2 − √ 2/ 2 }\)
\(\text{⇒ f (π /4) . f ( 5 π/ 4 ) = − 1/2 ( b + 1 )^ 2 ≤ 0 ; ∀ a ; b ; c}\)
\(⇒ f (x)= 0 luôn có ít nhất 1 nghiệm thuộc đoạn [ π /4 ; 5π/4]\)
Hay pt đã có nghiệm.
Tính S là tổng tất cả các nghiệm của phương trình 4( 22x + 2-2x)– 4( 2x + 2-x) - 7 = 0.
A. S = 1
B. S = -1
C. S = 3
D. S = 0
Chọn D.
Đặt t = 2x + 2-x, suy ra t2 = 22x + 2 -2x + 2.
Ta có
Phương trình trở thành
khi đó ; S = x1+ x2 = 0.
Cho phương trình 2 x 3 x 2 - x + 2 - 7 x 3 x 2 + 5 x + 2 (1). Gọi S là tổng tất cả các nghiệm của phương trình (1). Giá trị của S là:
A. S = −11
B. S = 11
C. S = - 11 2
D. S = 11 2
Gọi S là tập nghiệm của phương trình 2 l o g 2 ( 2 x - 2 ) + l o g 2 ( x - 3 ) 2 = 2 . Tổng các phần tử của S bằng:
A. 6
B. 4 + 2
C. 2 + 2
D. 8 + 2
Gọi S là tập nghiệm của phương trình 2 log 2 ( 2 x - 2 ) + log 2 ( x - 3 ) 2 = 2 trên ℝ . Tổng các phần tử của S là
A. 8 + 2
B. 4 + 2
C. 6 + 2
D. 8
Gọi S là tập nghiệm của phương trình \({x^2} - 24x + 143 = 0\).
Các mệnh đề sau đúng hay sai?
a) \(13 \in S\)
b) \(11 \notin S\)
c) \(n\;(S) = 2\)
a) Vì \({13^2} - 24.13 + 143 = 0\) nên \(x = 13\) là nghiệm của phương trình \( \Rightarrow 13 \in S\)
Vậy mệnh đề “\(13 \in S\)” đúng.
b) Vì \({11^2} - 24.11 + 143 = 0\) nên \(x = 11\) là nghiệm của phương trình \( \Rightarrow 11 \in S\)
Vậy mệnh đề “\(11 \notin S\)” sai.
c) Ta có:
\(\begin{array}{l}{x^2} - 24x + 143 = 0\\ \Leftrightarrow {x^2} - 11x - 13x + 11.13 = 0\\ \Leftrightarrow x.\left( {x - 11} \right) - 13.\left( {x - 11} \right) = 0\\ \Leftrightarrow \left( {x - 11} \right).\left( {x - 13} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 11\\x = 13\end{array} \right.\end{array}\)
Tập nghiệm của phương trình là \(S=\{11;13\}\)
Phương trình có 2 nghiệm hay \(n\;(S) = 2\)
=> Mệnh đề “\(n\;(S) = 2\)” đúng.
Câu 30. Cho thuật toán tính tổng s= -1+2-3+4+…+n(-1)n sử dụng phương pháp liệt kê dưới đây: Bước 1: Nhập N Bước 2: i ← 0, s← 1; Bước 3: i ← i+1 Bước 4: Nếu i > N thì đưa ra tổng s và kết thúc chương trình. Bước 5: Nếu i chia hết cho 2 thì s ← s+i, quay lại B3 Bước 6: Nếu i không chia hết cho 2 thì s ← s-i, quay lại B3 Hãy cho biết bước sai trong thuật toán trên: A. Bước 2 B. Bước 3 C. Bước 4 D. Bước 5
|
Cho phương trình 1 2 log 2 ( x + 2 ) + x + 3 = log 2 2 x + 1 x + ( 1 + 1 x ) 2 + 2 x + 2 , gọi S là tổng tất cả các nghiệm dương của nó. Khi đó, giá trị của S là
A. S = - 2
B. S = 1 - 13 2
C. S = 1 + 13 2
D. Đáp án khác
Cho phương trình 1 2 log 2 ( x + 2 ) + x + 3 = log 2 2 x + 1 2 + ( 1 + 1 x ) 2 + 2 x + 2 , gọi S là tổng tất cả các nghiệm dương của nó. Khi đó, giá trị của S là
A. S = -2
B. S = 1 - 13 2
C. S = 1 + 13 2
D. Đáp án khác
Cho phương trình
\(\left(m-1\right)x^2-2\left(m-3\right)x+m+1\)1=0
Với điều kiện của m để phương trình có 2 nghiệm x1, x2, gọi S và P lần lượt là tổng và tích của 2 nghiệm của phương trình. Tìm các giá trị của m để S và P là các số nguyên