Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 19:06

a) \(y = {\log _a}M \Leftrightarrow M = {a^y}\)

b) Lấy loogarit theo cơ số b cả hai vế của \(M = {a^y}\) ta được

\({\log _b}M = {\log _b}{a^y} \Leftrightarrow {\log _b}M = y{\log _b}a \Leftrightarrow y = \frac{{{{\log }_b}M}}{{{{\log }_b}a}}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 6 2018 lúc 9:30

Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 8 2023 lúc 3:31

loading...

Nguyễn Vi
Xem chi tiết
Nghi Minh
22 tháng 6 2019 lúc 15:59

Bạn thử tải app này xem có đáp án không nhé <3 https://giaingay.com.vn/downapp.html

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 20:01

Đáp án C.

Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 8 2023 lúc 21:04

Hàm số a,b là các hàm số logarit

a: \(log_{\sqrt{3}}x\)

Cơ số là \(\sqrt{3}\)

b: \(log_{2^{-2}}x\)

Cơ số là \(2^{-2}=\dfrac{1}{4}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 1 2018 lúc 9:28

Nguyễn Vi
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 6 2019 lúc 8:55

ĐKXĐ: \(x\ne y\)

\(log_xy=\frac{1}{log_xy}\Leftrightarrow log_x^2y=1\Leftrightarrow\left[{}\begin{matrix}log_xy=1\\log_xy=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=y\left(l\right)\\x=\frac{1}{y}\end{matrix}\right.\)

\(log_x\left(x-\frac{1}{x}\right)=log_{x^{-1}}\left(x+\frac{1}{x}\right)\Leftrightarrow log_x\left(x-\frac{1}{x}\right)=-log_x\left(x+\frac{1}{x}\right)\)

\(\Leftrightarrow log_x\left(x-\frac{1}{x}\right)\left(x+\frac{1}{x}\right)=0\Leftrightarrow\left(x-\frac{1}{x}\right)\left(x+\frac{1}{x}\right)=1\)

\(\Leftrightarrow x^2-\frac{1}{x^2}=1\Leftrightarrow x^4-x^2-1=0\Rightarrow x^2=\frac{1+\sqrt{5}}{2}\Rightarrow y^2=\frac{1}{x^2}=\frac{-1+\sqrt{5}}{2}\)

\(\Rightarrow x^2+xy+y^2=\frac{1+\sqrt{5}}{2}+1+\frac{-1+\sqrt{5}}{2}=\sqrt{5}+1\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 1 2019 lúc 16:39

Nguyễn Vi
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 6 2019 lúc 21:01

\(log_xy=log_yx=\frac{1}{log_xy}\Rightarrow\left(log_xy\right)^2=1\Rightarrow\left[{}\begin{matrix}log_xy=1\\log_xy=-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=y\\x=\frac{1}{y}\end{matrix}\right.\)

Do \(log_x\left(x-y\right)\) tồn tại \(\Rightarrow x-y\ne0\Rightarrow x\ne y\Rightarrow x=\frac{1}{y}\)

\(log_x\left(x-y\right)=log_y\left(x+1\right)\Leftrightarrow log_x\left(x-\frac{1}{x}\right)=-log_x\left(x+1\right)\)

\(\Leftrightarrow log_x\left[\left(x-\frac{1}{x}\right)\left(x+1\right)\right]=0\Leftrightarrow\left(x-\frac{1}{x}\right)\left(x+1\right)=1\)

\(\Leftrightarrow\left(x^2-1\right)\left(x+1\right)=x\Leftrightarrow x^3+x^2-2x-1=0\)

Pt này nghiệm xấu, đề bài có vấn đề