Cho hàm số y = x 4 − 2 x 2 − 4 có đồ thị (C). Gọi h 1 là khoảng cách giữa hai điểm cực tiểu của (C) và h 2 là khoảng cách từ điểm cực đại của (C) tới trục hoành. Tỉ số h 1 h 2 là
A. 1 2 .
B. 5 4 .
C. 5 2 .
D. 4 5 .
Cho hàm số y=f(x)=2/3.x
a) Tìm f(7); f(-5/4)
b)Tìm x khi y=10
c)Tìm x khi f(x)=8
d)Vẽ đồ thị hàm số trên.
e) Hỏi điểm P(9;16) có thuộc đồ thị hàm số y=2/3 x ko?
g) Tìm điểm K và H trên đồ thị hàm số y=2/3x biết xK =6,yH =4.
Cho hàm số \(y=x^4-2mx^2+m\) có đồ thị (C) với m là tham số thực. Gọi A là điểm thuộc đồ thị (C) có hoành độ bằng 1. Tìm m để tiếp tuyến \(\Delta\) với đồ thị (C) tại A cắt đượng tròn \(\left(\lambda\right):x^2+\left(y-1\right)^2=4\) tạo thành 1 dây cung có độ dài nhỏ nhất
x^2+(y-1)^2=4
=>R=2 và I(0;1)
A(1;1-m) thuộc (C)
y'=4x^3-4mx
=>y'(1)=4-4m
PT Δsẽ là y=(4-m)(x-1)+1-m
Δ luôn đi qua F(3/4;0) và điểm F nằm trong (λ)
Giả sử (Δ) cắt (λ) tại M,N
\(MN=2\sqrt{R^2-d^2\left(I;\Delta\right)}=2\sqrt{4-d^2\left(I;\Delta\right)}\)
MN min khi d(I;(Δ)) max
=>d(I;(Δ))=IF
=>Δ vuông góc IF
Khi đó, Δ có 1 vecto chỉ phương là: vecto u vuông góc với vecto IF=(3/4;p-1)
=>vecto u=(1;4-4m)
=>1*3/4-(4-4m)=0
=>m=13/16
Cho hàm số y = f ( x ) = a x 3 + b x 2 + c x + d (a;b;c;d ∈ R, a ≠ 0) có đồ thị (C). Biết rằng đồ thị (C) đi qua gốc tọa độ và có đồ thị hàm số y = f’(x) cho bởi hình vẽ sau đây.
Tính giá trị H = f(4) – f(2)
A. H = 51
B. H = 54
C. H = 58
D. H = 64
Đáp án C
Phương pháp : Xác định hàm số f’(x) từ đó tính được
Cách giải : Ta dễ dàng tìm được phương trình parabol là
Đồ thị hàm số đi qua gốc tọa độ
Cho hàm số y=f(x)=x^3+ax^2+bx+4 có đồ thị (C) như hình vẽ. Hỏi (C) là đồ thị của hàm số y=f(x) nào?
A. y = f ( x ) = x 3 - 3 x 2 + 4
B. y = f ( x ) = x 3 + 6 x 2 + 9 x + 4
C. y = f ( x ) = x 3 + 3 x 2 + 4
D. y = f ( x ) = x 3 - 6 x 2 + 9 x + 4
Cho hai hàm số f ( x ) = a x 4 + b x 3 + c x 2 + d x + e với a ≠ 0 và g(x)= p x 2 + q x - 3 c ó đồ thị như hình vẽ bên dưới. Đồ thị hàm số y=f(x) đi qua gốc tọa độ và cắt đồ thị hàm số y=g(x) tại bốn điểm có hoành độ lần lượt là -2;-1;1 và m. Tiếp tuyến của đồ thị hàm số y=f(x)-g(x) tại điểm có hoành độ x=-2 có hệ số góc bằng -15/2. Gọi (H) là hình phẳng giới hạn bởi đồ thị hai hàm số y=f(x) và y=g(x) (phần được tô đậm trong hình vẽ). Diện tích của hình (H) bằng
A. 1553 120
B. 1553 240
C. 1553 60
D. 1553 30
Cho hàm số y=f(x)=x+3/2.|x|
a, Vẽ đồ thị hàm số trên
b, Gọi E và F là 2 điểm thuộc đồ thị hàm số trên có hoành đọ lần lượt là -4 và 4/5. Xác định tọa độ của 2 điểm E và F để 2 điểm ME + MF là nhỏ nhất
Cho hàm số y=f(x)=(a-1)x+3 tìm a để
a. Đồ thị hàm số cắt đường thẳng y=-x+10
b. Đồ thị hàm số cắt rrucj hoành tại điểm có hoàng độ x=4
c. Đồ thị hàm số cắt trục tung tại điểm có tung độ y=2
Cho hàm số y=f(x)=3X
a, Vẽ đồ thị hàm số
b, Tính f(5); f(-7/12)
c, Các điểm M( -2:6), C( 4/9; 4/3) có thuộc đồ thị hàm số không ? Vì sao
Trong mặt phẳng tọa độ Oxy, cho điểm A(3; 4) và hàm số y = 4/3 x .
a) Điểm A có thuộc đồ thị của hàm số y = 4/3 x hay không? Vì sao?
b) Vẽ đồ thị của hàm số y = 4/3 x .
c) Xác định các điểm H(3; 0), P(6; 0), Q(0; 4) trên mặt phẳng tọa độ Oxy ở trên.
d) Chứng minh AO = AP
a: \(y=\dfrac{4}{3}\cdot3=4\)
=>A có thuộc đồ thị
Cho hàm số bậc nhất y=(m+1)x-2 có đồ thị là đường thẳng (d).
a)Tìm m để đồ thị hàm số (d) cắt đồ thị hàm số y=x+4 tại điểm có hoành độ là :-2.
b)Vẽ đồ thị hàm số vừa tìm được ở câu a).
c)Tính diện tích tam giác tạo bởi đồ thị hàm số (d)với hai trục tọa độ.(giúp mình ,cảm ơn)
a, Thay x = -2 => y = -2 + 4 = 2 => A(-2;2)
(d) cắt y = x + 4 tại A(-2;2) <=> 2 = -2 ( m + 1 ) - 2
<=> -2m - 2 - 2 = 2 <=> -2m = 6 <=> m = -3
Vậy (d) : y = -2x - 2
b, bạn tự vẽ nhé
c, Cho x = 0 => y = -2
=> (d) cắt trục Oy tại A(0;-2) => OA = | -2 | = 2
Cho y = 0 => x = -1
=> (d) cắt trục Ox tại B(-1;0) => OB = | -1 | = 1
Ta có : \(S_{OAB}=\frac{1}{2}.OA.OB=\frac{1}{2}.2.1=1\)( dvdt )
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\hept{m+5=22m−10≠−1\hept{m+5=22m−10≠−1 <=> \hept{m=−3m≠92\hept{m=−3m≠92 <=> m=−3
Giả sử (d) luôn đi qua điểm cố định M(x0; y0)
Ta có: y0=(m+5)x0+2m−10y0=(m+5)x0+2m−10
<=> mx0+5x0+2m−10−y0=0mx0+5x0+2m−10−y0=0
<=> m(xo+2)+5x0−y0−10=0m(xo+2)+5x0−y0−10=0
Để M cố định thì: \hept{x0+2=05x0−y0−10=0\hept{x0+2=05x0−y0−10=0 <=> \hept{x0=−2y0=−20\hept{x0=−2y0=−20
Vậy...
????????????????