Bài 5: Khoảng cách

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kimian Hajan Ruventaren

Cho hàm số \(y=x^4-2mx^2+m\) có đồ thị (C) với m là tham số thực. Gọi A là điểm thuộc đồ thị (C) có hoành độ bằng 1. Tìm m để tiếp tuyến \(\Delta\)  với đồ thị (C) tại A cắt đượng tròn \(\left(\lambda\right):x^2+\left(y-1\right)^2=4\) tạo thành 1 dây cung có độ dài nhỏ nhất

Nguyễn Lê Phước Thịnh
2 tháng 7 2023 lúc 15:02

x^2+(y-1)^2=4

=>R=2 và I(0;1)

A(1;1-m) thuộc (C)

y'=4x^3-4mx

=>y'(1)=4-4m

PT Δsẽ là y=(4-m)(x-1)+1-m

Δ luôn đi qua F(3/4;0) và điểm F nằm trong (λ)

Giả sử (Δ) cắt (λ) tại M,N

\(MN=2\sqrt{R^2-d^2\left(I;\Delta\right)}=2\sqrt{4-d^2\left(I;\Delta\right)}\)

MN min khi d(I;(Δ)) max

=>d(I;(Δ))=IF 

=>Δ vuông góc IF

Khi đó, Δ có 1 vecto chỉ phương là: vecto u vuông góc với vecto IF=(3/4;p-1)

=>vecto u=(1;4-4m)

=>1*3/4-(4-4m)=0

=>m=13/16


Các câu hỏi tương tự
Kimian Hajan Ruventaren
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Quỳnh Anh
Xem chi tiết
Quỳnh Anh
Xem chi tiết
lê minh trang
Xem chi tiết
오귀족
Xem chi tiết
Hà Mi
Xem chi tiết
Hà Mi
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết