Cho ba số thực dương a, b, c a ≠ 1 , b ≠ 1 , c ≠ 1 thỏa mãn log a b = 2 log b c = 4 log c a và a + 2 b + 3 c = 48 . Khi đó P=abc bằng bao nhiêu?
A. 324
B. 243
C. 521
D. 512
cho ba số thực a,b,c dương thỏa mãn abc=1. chứng minh rằng a/(2b+a) + b/(2c+b) +c/(2a+c)>=1
\(\frac{a}{2b+a}+\frac{b}{2c+b}+\frac{c}{2a+c}=\frac{a^2}{2ab+a^2}+\frac{b^2}{2bc+b^2}+\frac{c^2}{2ca+c^2}\)
\(\ge\frac{\left(a+b+c\right)^2}{2ab+a^2+2bc+b^2+2ca+c^2}=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)
Dấu "=" xảy ra khi \(a=b=c=1\)
bạn giải thích rõ hơn cho mình về xét dấu = xảy ra đc k?
a/2b+a = b/2c+b = c/2a+c
kèm thêm đk : abc = 1
Cho ba số thực dương a,b,c thỏa mãn a+b+c=1. Tìm GTNN của biểu thức \(P=\dfrac{1}{a}+\dfrac{4}{b}+\dfrac{9}{c}\)
Áp dụng BĐT BSC:
\(P=\dfrac{1}{a}+\dfrac{4}{b}+\dfrac{9}{c}\ge\dfrac{\left(1+2+3\right)^2}{a+b+c}=\dfrac{36}{1}=36\)
\(minP=36\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{6}\\b=\dfrac{1}{3}\\c=\dfrac{1}{2}\end{matrix}\right.\)
Cho ba số thực dương thỏa mãn abc=1. CMR
\(\dfrac{1}{a^2+a+1}+\dfrac{1}{b^2+b+1}+\dfrac{1}{c^2+c+1}\ge1\)
Đặt \(a=\dfrac{yz}{x^2};b=\dfrac{zx}{y^2};c=\dfrac{xy}{z^2}\)
Áp dụng BĐT BSC:
\(\dfrac{1}{a^2+a+1}+\dfrac{1}{b^2+b+1}+\dfrac{1}{c^2+c+1}\)
\(=\dfrac{x^4}{x^4+x^2yz+y^2z^2}+\dfrac{y^4}{y^4+y^2zx+z^2x^2}+\dfrac{z^4}{z^4+z^2xy+x^2y^2}\)
\(\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{x^4+y^4+z^4+x^2y^2+y^2z^2+z^2x^2+xyz\left(x+y+z\right)}\)
Ta cần chứng minh:
\(\dfrac{\left(x^2+y^2+z^2\right)^2}{x^4+y^4+z^4+x^2y^2+y^2z^2+z^2x^2+xyz\left(x+y+z\right)}\ge1\)
\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2\ge x^4+y^4+z^4+x^2y^2+y^2z^2+z^2x^2+xyz\left(x+y+z\right)\)
\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2-xy.yz-yz.zx-zx.xy\ge0\)
\(\Leftrightarrow\left(xy-yz\right)^2+\left(yz-zx\right)^2+\left(zx-xy\right)^2\ge0,\forall x,y,z\)
\(\Rightarrow dpcm\)
Đẳng thức xảy ra khi \(a=b=c=1\)
cho ba số thực a,b,c dương thỏa mãn abc=1. chứng minh rằng a/(2b+a) + b/(2c+b) +c/(2a+c) ≥ 1
Áp dụng BĐT Cauchy với a ; b ; c dương , ta có :
\(\dfrac{a}{2b+a}+\dfrac{b}{2c+b}+\dfrac{c}{2a+b}=\dfrac{a^2}{2ab+a^2}+\dfrac{b^2}{2bc+b^2}+\dfrac{c^2}{2ac+bc}\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ac}=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)
Vậy ...
cho ba số thực dương a,b,c thỏa mãn 1/a+1/b+1/c=3.
c/m: căn (a+b) +căn(b+c)+căn(c+a)>=3 căn 2
Cần c/m: \(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\ge3\sqrt{2}\)
Mặt khác \(\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)\left(\frac{1}{\sqrt{a+b}}+\frac{1}{\sqrt{b+c}}+\frac{1}{\sqrt{c+a}}\right)\ge9\)
Nên ta chỉ cần c/m \(P=\frac{1}{\sqrt{a+b}}+\frac{1}{\sqrt{b+c}}+\frac{1}{\sqrt{c+a}}\le\frac{9}{3\sqrt{2}}=\frac{3\sqrt{2}}{2}\)
Ta có
\(P.\frac{1}{\sqrt{2}}=\frac{1}{\sqrt{\left(a+b\right).2}}+\frac{1}{\sqrt{\left(b+c\right).2}}+\frac{1}{\sqrt{\left(c+a\right).2}}\)
\(=\sqrt{\frac{1}{a+b}}.\sqrt{\frac{1}{2}}+\sqrt{\frac{1}{b+c}}.\sqrt{\frac{1}{2}}+\sqrt{\frac{1}{c+a}}.\sqrt{\frac{1}{2}}\)
\(\le\frac{1}{2}\left(\frac{1}{a+b}+\frac{1}{2}\right)+\frac{1}{2}\left(\frac{1}{b+c}+\frac{1}{2}\right)+\frac{1}{2}\left(\frac{1}{c+a}+\frac{1}{2}\right)\)
\(=\frac{1}{2}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)+\frac{3}{4}\le\frac{1}{8}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)+\frac{3}{4}\)
\(=\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\frac{3}{4}=\frac{1}{4}.3+\frac{3}{4}=\frac{3}{2}\)
Suy ra \(P\le\frac{3}{2}:\frac{1}{\sqrt{2}}=\frac{3\sqrt{2}}{2}\)
BĐT được c/m
Đẳng thức xảy ra \(\Leftrightarrow a=b=c=1\)
Cho ba số thực dương a, b, c khác 1 và đồ thị của ba hàm số mũ \(y = {a^x};\,y = {b^x};\,y = {c^x}\) được cho bởi Hình 14. Kết luận nào sau đây là đúng đối với ba số a, b, c ?
A. c < a < b
B. c < b < a
C. a < b < c
D. b < c < a
\(-\) Do \(c^x\) nghịch biến\(,a^x,b^x\) đồng biến\(\Rightarrow c< 1,a>1,b>1\Rightarrow c\) nhỏ nhất \(\Rightarrow\)Loại \(C,D\)
\(-\) Dựa vào đồ thị ta thấy\(,b^x\) có đồ thị đi lên cao hơn so với \(a^x\Rightarrow b>a\Rightarrow\) Chọn \(A\)
Cho ba số thực dương a,b,c .Chứng minh rằng :
\(1+\dfrac{3}{ab+bc+ca}\ge\dfrac{6}{a+b+c}\)
\(1+\dfrac{9}{3\left(ab+bc+ca\right)}\ge1+\dfrac{9}{\left(a+b+c\right)^2}\ge2\sqrt{\dfrac{9}{\left(a+b+c\right)^2}}=\dfrac{6}{a+b+c}\)
Cho ba số thực dương a,b,c thỏa mãn abc = 1. Chứng minh rằng
\(\left(a^2+b^2+c^2\right)^3\) ≥ 9(a + b + c)
(a2+b2+c2)3(a2+b2+c2)3 ≥ 9(a + b + c)
Cho a,b,c là ba số thực dương và a+b+c=3.CMR:\(\frac{a}{b^2c+1}+\frac{b}{c^2a+1}+\frac{c}{a^2b+1}\ge2\)
Hình như đề sai, theo mik là nó lớn hơn bằng 3/2 nhé (ko biết đúng ko)
\(\frac{a}{b^2c+1}+\frac{b}{c^2a+1}+\frac{c}{a^2b+1}=\frac{a^2}{ab^2c+a}+\frac{b^2}{bc^2a+b}+\frac{c^2}{ca^2b+c}\)
Do a,b,c là 3 số thực dương nên áp dụng BĐT Cauchy Schwarz cho 3 phân số:
\(\frac{a^2}{ab^2c+a}+\frac{b^2}{bc^2a+b}+\frac{c^2}{ca^2b+c}\ge\frac{\left(a+b+c\right)^2}{ab^2c+bc^2a+ca^2b+a+b+c}\)
\(=\frac{\left(a+b+c\right)^2}{abc\left(a+b+c\right)+\left(a+b+c\right)}=\frac{9}{3abc+3}\)(Thay a+b+c=3)
Lại có: \(abc\le\frac{\left(a+b+c\right)^3}{27}=\frac{3^3}{27}=1\)(BĐT Cauchy cho 3 số)
\(\Rightarrow\frac{9}{3abc+3}\ge\frac{9}{6}=\frac{3}{2}\Rightarrow\frac{a^2}{ab^2c+a}+\frac{b^2}{bc^2a+b}+\frac{c^2}{ca^2b+c}\ge\frac{3}{2}\)
\(\Rightarrow\frac{a}{b^2c+1}+\frac{b}{c^2a+1}+\frac{c}{a^2b+1}\ge\frac{3}{2}.\)