Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tú Triệu Anh
Xem chi tiết
Nguyễn Hưng Phát
8 tháng 2 2019 lúc 8:30

\(\frac{a}{2b+a}+\frac{b}{2c+b}+\frac{c}{2a+c}=\frac{a^2}{2ab+a^2}+\frac{b^2}{2bc+b^2}+\frac{c^2}{2ca+c^2}\)

\(\ge\frac{\left(a+b+c\right)^2}{2ab+a^2+2bc+b^2+2ca+c^2}=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Tú Triệu Anh
8 tháng 2 2019 lúc 20:25

bạn giải thích rõ hơn cho mình về xét dấu = xảy ra đc k?

Arima Kousei
9 tháng 2 2019 lúc 15:04

a/2b+a = b/2c+b = c/2a+c

kèm thêm đk : abc = 1

Kimian Hajan Ruventaren
Xem chi tiết
Hồng Phúc
16 tháng 1 2021 lúc 20:25

Áp dụng BĐT BSC:

\(P=\dfrac{1}{a}+\dfrac{4}{b}+\dfrac{9}{c}\ge\dfrac{\left(1+2+3\right)^2}{a+b+c}=\dfrac{36}{1}=36\)

\(minP=36\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{6}\\b=\dfrac{1}{3}\\c=\dfrac{1}{2}\end{matrix}\right.\)

Kimian Hajan Ruventaren
Xem chi tiết
Hồng Phúc
16 tháng 3 2021 lúc 12:48

Đặt \(a=\dfrac{yz}{x^2};b=\dfrac{zx}{y^2};c=\dfrac{xy}{z^2}\)

Áp dụng BĐT BSC:

\(\dfrac{1}{a^2+a+1}+\dfrac{1}{b^2+b+1}+\dfrac{1}{c^2+c+1}\)

\(=\dfrac{x^4}{x^4+x^2yz+y^2z^2}+\dfrac{y^4}{y^4+y^2zx+z^2x^2}+\dfrac{z^4}{z^4+z^2xy+x^2y^2}\)

\(\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{x^4+y^4+z^4+x^2y^2+y^2z^2+z^2x^2+xyz\left(x+y+z\right)}\)

Ta cần chứng minh: 

\(\dfrac{\left(x^2+y^2+z^2\right)^2}{x^4+y^4+z^4+x^2y^2+y^2z^2+z^2x^2+xyz\left(x+y+z\right)}\ge1\)

\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2\ge x^4+y^4+z^4+x^2y^2+y^2z^2+z^2x^2+xyz\left(x+y+z\right)\)

\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2-xy.yz-yz.zx-zx.xy\ge0\)

\(\Leftrightarrow\left(xy-yz\right)^2+\left(yz-zx\right)^2+\left(zx-xy\right)^2\ge0,\forall x,y,z\)

\(\Rightarrow dpcm\)

Đẳng thức xảy ra khi \(a=b=c=1\)

Tú Triệu Anh
Xem chi tiết
Khôi Bùi
10 tháng 2 2019 lúc 9:20

Áp dụng BĐT Cauchy với a ; b ; c dương , ta có :

\(\dfrac{a}{2b+a}+\dfrac{b}{2c+b}+\dfrac{c}{2a+b}=\dfrac{a^2}{2ab+a^2}+\dfrac{b^2}{2bc+b^2}+\dfrac{c^2}{2ac+bc}\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ac}=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)

Vậy ...

MARKTUAN
Xem chi tiết
Thiên An
6 tháng 8 2017 lúc 20:02

Cần c/m: \(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\ge3\sqrt{2}\)

Mặt khác \(\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)\left(\frac{1}{\sqrt{a+b}}+\frac{1}{\sqrt{b+c}}+\frac{1}{\sqrt{c+a}}\right)\ge9\)

Nên ta chỉ cần c/m  \(P=\frac{1}{\sqrt{a+b}}+\frac{1}{\sqrt{b+c}}+\frac{1}{\sqrt{c+a}}\le\frac{9}{3\sqrt{2}}=\frac{3\sqrt{2}}{2}\)

Ta có

\(P.\frac{1}{\sqrt{2}}=\frac{1}{\sqrt{\left(a+b\right).2}}+\frac{1}{\sqrt{\left(b+c\right).2}}+\frac{1}{\sqrt{\left(c+a\right).2}}\)

\(=\sqrt{\frac{1}{a+b}}.\sqrt{\frac{1}{2}}+\sqrt{\frac{1}{b+c}}.\sqrt{\frac{1}{2}}+\sqrt{\frac{1}{c+a}}.\sqrt{\frac{1}{2}}\)

\(\le\frac{1}{2}\left(\frac{1}{a+b}+\frac{1}{2}\right)+\frac{1}{2}\left(\frac{1}{b+c}+\frac{1}{2}\right)+\frac{1}{2}\left(\frac{1}{c+a}+\frac{1}{2}\right)\)

\(=\frac{1}{2}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)+\frac{3}{4}\le\frac{1}{8}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)+\frac{3}{4}\)

\(=\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\frac{3}{4}=\frac{1}{4}.3+\frac{3}{4}=\frac{3}{2}\)

Suy ra  \(P\le\frac{3}{2}:\frac{1}{\sqrt{2}}=\frac{3\sqrt{2}}{2}\)

BĐT được c/m

Đẳng thức xảy ra  \(\Leftrightarrow a=b=c=1\)

Buddy
Xem chi tiết
Mai Trung Hải Phong
22 tháng 9 2023 lúc 19:18

\(-\) Do \(c^x\) nghịch biến\(,a^x,b^x\) đồng biến\(\Rightarrow c< 1,a>1,b>1\Rightarrow c\) nhỏ nhất \(\Rightarrow\)Loại \(C,D\)

\(-\) Dựa vào đồ thị ta thấy\(,b^x\) có đồ thị đi lên cao hơn so với \(a^x\Rightarrow b>a\Rightarrow\) Chọn \(A\)

Nguyễn Lê Phước Thịnh
13 tháng 8 2023 lúc 21:43

Chọn A

Nguyễn Thị Mỹ vân
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 8 2021 lúc 19:51

\(1+\dfrac{9}{3\left(ab+bc+ca\right)}\ge1+\dfrac{9}{\left(a+b+c\right)^2}\ge2\sqrt{\dfrac{9}{\left(a+b+c\right)^2}}=\dfrac{6}{a+b+c}\)

VUX NA
Xem chi tiết
Nguyễn Hoài Đức CTVVIP
21 tháng 8 2021 lúc 19:56

(a2+b2+c2)3(a2+b2+c2)3 ≥ 9(a + b + c)

VyLinhLuân
21 tháng 8 2021 lúc 19:58

(a2+b2+c2)3(a2+b2+c2)3 ≥ 9(a + b + c)

VyLinhLuân
21 tháng 8 2021 lúc 19:58

chúc bn hok tốt

Lê Ngọc Anh
Xem chi tiết
Nguyễn Tất Đạt
16 tháng 6 2018 lúc 22:05

Hình như đề sai, theo mik là nó lớn hơn bằng 3/2 nhé (ko biết đúng ko)

\(\frac{a}{b^2c+1}+\frac{b}{c^2a+1}+\frac{c}{a^2b+1}=\frac{a^2}{ab^2c+a}+\frac{b^2}{bc^2a+b}+\frac{c^2}{ca^2b+c}\)

Do a,b,c là 3 số thực dương nên áp dụng BĐT Cauchy Schwarz cho 3 phân số:

\(\frac{a^2}{ab^2c+a}+\frac{b^2}{bc^2a+b}+\frac{c^2}{ca^2b+c}\ge\frac{\left(a+b+c\right)^2}{ab^2c+bc^2a+ca^2b+a+b+c}\)

\(=\frac{\left(a+b+c\right)^2}{abc\left(a+b+c\right)+\left(a+b+c\right)}=\frac{9}{3abc+3}\)(Thay a+b+c=3)

Lại có: \(abc\le\frac{\left(a+b+c\right)^3}{27}=\frac{3^3}{27}=1\)(BĐT Cauchy cho 3 số)

\(\Rightarrow\frac{9}{3abc+3}\ge\frac{9}{6}=\frac{3}{2}\Rightarrow\frac{a^2}{ab^2c+a}+\frac{b^2}{bc^2a+b}+\frac{c^2}{ca^2b+c}\ge\frac{3}{2}\)

\(\Rightarrow\frac{a}{b^2c+1}+\frac{b}{c^2a+1}+\frac{c}{a^2b+1}\ge\frac{3}{2}.\)