Số thực m nhỏ nhất để phương trình 8 x + 3 x . 4 x + ( 3 x 2 + 1 ) 2 x = ( m 3 - 1 ) x 3 + ( m - 1 ) x có nghiệm dương là a+e lnb, với a,b là các số nguyên. Giá trị của biểu thức a+b bằng
A. 7.
B. 4.
C. 5.
D. 3.
Cho phương trình \(x^2-2\left(m+4\right)x+m^2-8=0\)
Tìm m để phương trình thỏa mãn \(x_1,x_2\) thỏa mãn:
\(A=x^2_1+x^2_2-x_1-x_2\) đạt giá trị nhỏ nhất.
\(B=x^2_1+x^2_2-x_1x_2\) đạt giá trị nhỏ nhất.
\(\Delta'=\left[-\left(m+4\right)\right]^2-1\left(m^2-8\right)=m^2+8m+16-m^2+8=8m+24\)
Để pt có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow8m+24\ge0\Leftrightarrow m\ge-3\)
Áp dụng định lý Vi-ét ta có:\(\left\{{}\begin{matrix}x_1+x_2=2m+8\\x_1x_2=m^2-8\end{matrix}\right.\)
\(A=x^2_1+x^2_2-x_1-x_2\\ =\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)\\ =\left(2m+8\right)^2-2\left(m^2-8\right)-\left(2m+8\right)\\ =4m^2+32m+64-2m^2+16-2m-16\\ =2m^2+30m+64\)
Amin=\(-\dfrac{97}{2}\)\(\Leftrightarrow m=-\dfrac{15}{2}\)
\(B=x^2_1+x^2_2-x_1x_2\\ =\left(x_1+x_2\right)^2-3x_1x_2\\ =\left(2m+8\right)^2-3\left(m^2-8\right)\\ =4m^2+32m+64-3m^2+24\\ =m^2+32m+88\)
Bmin=-168\(\Leftrightarrow\)m=-16
Cho phương trình: m2x + m(x - 3) = 6(x - 1) (m là tham số) (1)
a. Giải phương trình (1) khi m = 1
b. Tìm m để phương trình (1) có một nghiệm duy nhất thỏa mãn biểu thức A=x^2+2x+3/x^2+2 đạt giá trị nhỏ nhất?
a: Khi m=1 thì pt sẽ là: x+x-3=6x-6
=>6x-6=2x-3
=>4x=3
=>x=3/4
b: m^2x+m(x-3)=6(x-1)
=>x(m^2+m-6)=-6+3m=3m-6
=>x(m+3)(m-2)=3(m-2)
Để (1) có nghiệm duy nhất thì (m+3)(m-2)<>0
=>m<>-3 và m<>2
=>x=3/(m+3)
\(A=\dfrac{\left(\dfrac{3}{m+3}\right)^2+\dfrac{6}{m+3}+3}{\left(\dfrac{3}{m+3}\right)^2+2}\)
\(=\dfrac{9+6m+18+3m^2+18m+27}{\left(m+3\right)^2}:\dfrac{9+2m^2+12m+18}{\left(m+3\right)^2}\)
\(=\dfrac{3m^2+24m+54}{2m^2+12m+27}>=\dfrac{1}{2}\)
Dấu = xảy ra khi 6m^2+48m+108=2m^2+12m+27
=>4m^2+36m+81=0
=>m=-9/2
Cho phương trình: m2x + m(x - 3) = 6(x - 1) (m là tham số) (1)
a. Giải phương trình (1) khi m = 1
b. Tìm m để phương trình (1) có một nghiệm duy nhất thỏa mãn biểu thức A=x^2+2x+3/x^2+2 đạt giá trị nhỏ nhất?
a) khi m = 1 ta có pt
x + 1.(x-3) = 6.(x-1)
=> x + x - 3 = 6x - 6
=> -4x = -3
=> x = 3/4
vậy với m=1 pt có no x =3/4
Bài 1: Phương trình\(\log_{2} ^3(x-1)-27y^3+8^y+1-x\) có bao nhiêu \((x;y)\) nghiệm thuộc \([8^{1992}; 8^{2020}]\)
Bài 2: Tìm tập hợp số thực m để phương trình \(2^{2x-1}+m×2^x+2m-2=0\) có 2 nghiệm thực phân biệt thuộc đoạn [1;2]
Bài 3: Tìm các số nguyên m để phương trình \(\log_{\dfrac{1}{2}}^{2} (x-2)^3+4(m-5) log _{\dfrac{1}{2}}\dfrac{1}{x-2}+4m-4\) có nghiệm thuộc \([\dfrac{5}{2};4]\)
Bài 4: Cho phương trình \((m-2)×log_{2} ^2 (x-4)-(2m+1)log_{\dfrac{1}{2}} (x-4)+m+2=0.\) Tìm m để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn 4<x1, x2<6
4) Tìm a thuộc Z để phương trình sau có nghiệm duy nhất là số nguyên
a^2x+2x=3(a+1-ax)
5) Tìm m để phương trình: (m^2+5)x=2-2mx
có nghiệm duy nhất đạt giá trị lớn nhất
6) Tìm tất cả các số thực a không âm sao cho phương trình: (a^2-4)x=a^2-ma+16 (ẩn x)
có nghiệm duy nhất là số nguyên
Cho phương trình x²-mx+m-1=0 (ẩn x, tham số m )
a)giải phương trình với m=3
b)chứng tỏ phường trình luôn có nghiệm với mọi giá trị m
c)gọi x₁ và x₂ là 2 nghiệm của phương trình . Tìm m để biểu thức A=x²₁ +x₂²-4x₁x₂ đạt giá trị nhỏ nhất. tìm giá trị nhỏ nhất đó
a)Ta có: \(\Delta\)= m2 - 4(m - 1) = m2 - 4m + 4 = (m - 2)2 \(\geq\)0 với mọi m
Vậy: PT có 2 nghiệm x1, x2 với mọi m
b)Theo Vi-et: x1 + x2 = m và x1x2 = m - 1
Do đó: A = x12 + x22 - 6x1x2 = (x1 + x2)2 - 8x1x2 = m2 - 8(m - 1) = m2 - 8m + 8 = ( m2 - 8m + 16) - 8 = (m - 4)2 - 8 \(\geq\)- 8 với mọi m
đúng nhé
Vậy: GTNN của A là -8 <=> m = 4
Cho phương trình x²-mx+m-1=0 (ẩn x, tham số m )
a)giải phương trình với m=3
b)chứng tỏ phường trình luôn có nghiệm với mọi giá trị m
c)gọi x₁ và x₂ là 2 nghiệm của phương trình . Tìm m để biểu thức A=x²₁ +x₂²-4x₁x₂ đạt giá trị nhỏ nhất. tìm giá trị nhỏ nhất đó
Cho phương trình x²-mx+m-1=0 (ẩn x, tham số m )
a)giải phương trình với m=3
b)chứng tỏ phường trình luôn có nghiệm với mọi giá trị m
c)gọi x₁ và x₂ là 2 nghiệm của phương trình . Tìm m để biểu thức A=x²₁ +x₂²-4x₁x₂ đạt giá trị nhỏ nhất. tìm giá trị nhỏ nhất đó
Tui hổng biết
kết quả là không biết
Số nguyên dương nhỏ nhất của m để phương trình (3m – 3)x + m = 3 m 2 + 1 có nghiệm duy nhất là:
A. m ≠ 1
B. m = 1
C. m = 2
D. m = 0
Cho phương trình \(m^2+m\left(x^2-3x-4-\sqrt{x+7}\right)-\left(x^2-3x-4\right)\sqrt{x+7}=0\) ,với m là tham số.
Có tất cả bao nhiêu số nguyên tố m để phương trình có số nghiệm thực nhiều nhất ?
ĐKXĐ: ...
\(\Leftrightarrow m^2+m\left(x^2-3x-4\right)-m\sqrt{x+7}-\left(x^2-3x-4\right)\sqrt{x+7}=0\)
\(\Leftrightarrow m\left(x^2-3x-4+m\right)-\sqrt{x+7}\left(x^2-3x-4+m\right)=0\)
\(\Leftrightarrow\left(m-\sqrt{x+7}\right)\left(x^2-3x-4+m\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=\sqrt{x+7}\left(1\right)\\m=-x^2+3x+4\left(2\right)\end{matrix}\right.\)
Với \(m\) nguyên tố \(\Rightarrow\) (1) luôn có đúng 1 nghiệm
Để pt có số nghiệm nhiều nhất \(\Rightarrow\) (2) có 2 nghiệm pb
\(\Rightarrow y=m\) cắt \(y=-x^2+3x+4\) tại 2 điểm pb thỏa mãn \(x\ge-7\)
\(\Rightarrow-66\le m\le\dfrac{25}{4}\Rightarrow m=\left\{2;3;5\right\}\)