Tìm giao điểm của hai đường thẳng: ( d 1 ): 5x – 2y = c và ( d 2 ): x + by = 2, biết rằng ( d 1 ) đi qua điểm A(5; -1) và ( d 2 ) đi qua điểm B(-7; 3).
- 2) Tìm tọa độ giao điểm của đường thẳng y = - 5x + 3(d) với hai trục tại độ và diện tam giác tạo bởi đường thẳng d và hai trục tại đó và tính gốc tạo bởi đường thẳng (d). Với trục Ox
2: Gọi A,B lần lượt là giao của (d) với trục Ox,Oy
Tọa độ A là:
y=0 và -5x+3=0
=>x=3/5 và y=0
Tọa độ B là:
x=0 và y=-5*0+3=3
=>A(3/5;0); B(0;3)
=>OA=0,6; OB=3
tan a=-5
=>a=101 độ
Bằng cách tìm giao điểm của hai đường thẳng d: 4x + 2y = −5 và d’: 2x – y = −1 ta tìm được nghiệm của hệ phương trình 4 x + 2 y = − 5 2 x − y = − 1 là ( x 0 ; y 0 ) . Tính x 0 . y 0
A. 21 32
B. − 21 32
C. 21 8
D. − 10 12
Ta có d: 4x + 2y = −5 ⇔ y = − 4 x − 5 2 và d’: 2x – y = −1 ⇔ y = 2x + 1
Xét phương trình hoành độ giao điểm của d và d’:
− 4 x − 5 2 = 2 x + 1 ⇔ −4x – 5 = 4x + 2 ⇔ 8x = −7 ⇔ x = − 7 8
⇒ y = 2 x + 1 = 2. − 7 8 + 1 = − 3 4
Vậy tọa độ giao điểm của d và d’ là − 7 8 ; − 3 4
Suy ra nghiệm của hệ phương trình 4 x + 2 y = − 5 2 x − y = − 1 là x 0 ; y 0 = − 7 8 ; − 3 4
Từ đó x 0. y 0 = − 7 8 . − 3 4 = 21 32
Đáp án: A
Cho (d₁): y = -4x và (d₂): y = \(\dfrac{1}{2}x+3\)
a) Tìm tọa độ giao điểm B của (d₁) và (d₂)
b) Viết phương trình đường thẳng (d) đi qua điểm B và cắt đường thẳng (d₃): y = 5x - 3 tại điểm có hoành độ là 1.
a) Phương trình hoành độ giao điểm của (d₁) và (d₂):
-4x = x/2 + 3
⇔ x/2 + 4x = -3
⇔ 9x/2 = -3
⇔ x = -3 : 9/2
⇔ x = -2/3
⇒ y = -4.(-2/3) = 8/3
⇒ B(-2/3; 8/3)
b) Gọi (d): y = ax + b
Do (d) đi qua B(-2/3; 8/3) nên:
a.(-2/3)+ b = 8/3
⇔ b = 8/3 + 2a/3 (1)
Thay x = 1 vào (d₃) ta có:
y = 5.1 - 3 = 2
⇒ C(1; 2)
Do (d) cắt (d₃) tại C(1; 2) nên:
a.1 + b = 2
⇔ a + b = 2 (2)
Thay (1) vào (2) ta có:
a + 8/3 + 2a/3 = 2
⇔ 5a/3 = 2 - 8/3
⇔ 5a/3 = -2/3
⇔ a = -2/3 : 5/3
⇔ a = -2/5
Thay a = -2/5 vào (1) ta có:
b = 8/3 + 2/3 . (-2/5)
= 12/5
Vậy (d): y = -2x/5 + 12/5
Tìm toạ độ giao điểm của hai đường thẳng:
a) (d): 3x - 4y = 6 và (d’): 2x - 3y = 5
b) (d): 5x - 2y = c và (d’): x + by = 2, biết (d) đi qua điểm A(5; -1) và (d’) đia qua điểm B(-7; 3)
Tìm giá trị của m để đường thẳng (d): y = (2m – 5)x – 5m đi qua giao điểm của hai đường thẳng ( d 1 ): 2x + 3y = 7 và ( d 2 ): 3x + 2y = 13
Gọi I là giao điểm của ( d 1 ) và ( d 2 ). Khi đó tọa độ của I là nghiệm của hệ phương trình:
Tọa độ điểm I là I(5; -1)
Đường thẳng (d): y = (2m – 5)x – 5m đi qua I(5; -1) nên tọa độ của I nghiệm đúng phương trình đường thẳng:
Ta có: -1 = (2m – 5).5 – 5m ⇔ -1 = 10m – 25 – 5m
⇔ 5m = 24 ⇔ m = 24/5
Vậy với m = 24/5 thì đường thẳng (d) đi qua giao điểm của hai đường thẳng ( d 1 ) và ( d 2 ).
Cho các hàm 1 số bậc nhất y = (m - 1)x + m - 1 có c dỗ thị là đường thăng (d) và y=-x+1 có đồ thị là đường thẳng (d)
a) Với m = 2, tìm tọa độ giao điểm của hai đường thẳng (d) và (d).
b) Tìm tất tất cả các giá trị của m để đường thẳng (d) đi qua điểm A(3; 4).
c) Tìm tất cả các giá trị của m để đường thẳng (d) cắt đường thẳng (d).
a: Thay m=2 vào y=(m-1)x+m-1, ta được:
y=(2-1)x+2-1=x+1
Phương trình hoành độ giao điểm là:
x+1=-x+1
=>2x=0
=>x=0
Thay x=0 vào y=x+1, ta được:
y=0+1=1
Vậy: Tọa độ giao điểm là A(0;1)
b: Thay x=3 và y=4 vào y=(m-1)x+m-1, ta được;
3(m-1)+m-1=4
=>4(m-1)=4
=>m-1=1
=>m=2
c: Để hai đường thẳng này cắt nhau thì \(m-1\ne-1\)
=>\(m\ne0\)
Tìm m, n để đường thẳng mx – 2y = n đi qua điểm A(2;1) và giao điểm của hai đường thẳng (d1): x – 2y = 1, (d2): –3x + y = 7.
gọi giao điểm của 2 đường thẳng (d1) và (d2) là M(x1,y1)
Tọa độ giao điểm của đt (d1) và (d2) là nghiệm của hệ phương trình(hpt):
\(\left\{{}\begin{matrix}x_1-2y_1=1\\-3x_1+y_1=7\end{matrix}\right.< =>\left\{{}\begin{matrix}x_1=-3\\y_1=-2\end{matrix}\right.\) <=> M(-3;-2)
Vì đường thẳng mx-2y=n đi qua điểm A(2;1) và giao điểm của 2 đường thẳng trên nên ta có hpt:
\(\left\{{}\begin{matrix}2m-2=n\\-3m+4=n\end{matrix}\right.< =>^{ }\left\{{}\begin{matrix}m=\frac{6}{5}\\n=\frac{2}{5}\end{matrix}\right.\)
Vậy....
Tìm tọa độ giao điểm của đường thẳng d: x- 2y + 3= 0 và đường tròn (C): x2+ y2- 2x – 4y = 0
A. (3; 3) và (-1; 1)
B. (1;1) và (-3;3)
C. (3; -3)
D. Đáp án khác
Tọa độ giao điểm của đường thẳng và đường tròn là nghiệm của hệ phương trình sau
hoặc
Vậy tọa độ giao điểm là (3;3) và (-1; 1) .
Chọn A.
1. Cho đường thẳng $(d):$ $y = ax+b$. Tìm $a$ và $b$ để đường thẳng $(d)$ song song với đường thẳng $(d'):$ $y = 5x+6$ và đi qua điểm $A(2;3)$.
2. Giải hệ phương trình $\left\{ \begin{aligned} & 3x + 2y = 11\\ & x + 2y = 5\\ \end{aligned}\right.$.
Bài 2 :
\(\hept{\begin{cases}3x+2y=11\left(1\right)\\x+2y=5\left(2\right)\end{cases}}\)
Lấy phương trình (1) - phương trình (2) ta được :
\(2x=6\Leftrightarrow x=3\)
Thay x = 3 vào phương trình (2) ta được :
\(3+2y=5\Leftrightarrow2y=2\Leftrightarrow y=1\)
Vậy \(\left(x;y\right)=\left(3;1\right)\)
1 , a = 5 , b = -7
2 , x = 3 , y = 1