Cho đường thẳng y = (k + 1)x + k (1)
Tìm giá trị của k để đường thẳng (1) đi qua gốc tọa độ
Cho đường thẳng y=(k+1)x+k (d) a) Tìm giá trị của k để đường thẳng (d) đi qua gốc tọa độ. b) Tìm giá trị của k để đường thẳng (d) cắt trục tung tại điểm có tung độ bằng 1- căn2 c) Tìm giá trị của k để đường thẳng (d) song song với đường thẳng y=(căn3+1)x+3
a: Thay x=0 và y=0 vào \(\left(d\right)\), ta được:
k=0
Cho đường thẳng \(y=\left(k+1\right)x+k\) (1)
a) Tìm giá trị của k để đường thẳng (1) đi qua gốc tọa độ
b) Tìm giá trị của k để đường thẳng (1) cắt trục tung tại điểm có tung độ bằng \(1-\sqrt{2}\)
c) Tìm giá trị của k để đường thẳng (1) song song với đường thẳng \(y=\left(\sqrt{3}+1\right)x+3\)
a. k = 0
b. k = 1 -\(\sqrt{2}\)
c . k = \(\sqrt{3}\)
Bài 3: Cho đường thẳng y= (k+1)x+k (1)
a) Tìm k để (1) đi qua gốc tọa độ
b) Tìm k để (1) cắt trục tung tại điểm có tung độ bằng \(1-\sqrt{2}\)
c) Tìm k để (1) song song với đường thẳng y= \(\left(\sqrt{3}+1\right)x+3\)
a: Thay x=0 và y=0 vào (1), ta được:
k=0
c: Để (1)//\(y=\left(\sqrt{3}+1\right)x+3\), ta được:
\(\left\{{}\begin{matrix}k+1=\sqrt{3}+1\\k\ne3\end{matrix}\right.\Leftrightarrow k=\sqrt{3}\)
Cho đường thẳng (d1): y= (3m-1) x + 2k - 4, (d2): y=(2m-1)x + 3k - 14
a/ Tìm m,k để đường thẳng d1 đi qua gốc tọa độ
b/ Tìm m,k để đường thẳng d2 cắt 2 trục tọa độ
c/ Tìm k để hai đường cắt nhau tại một điểm trên trục tung
Cho 3 đường thẳng :
x + y = 1 (d1)
x - y =1 (d2)
(k+1)x + (k-1)y = k +1 với k 1 (d3)
Tìm các giá trị của k để:
a) (d1) và (d3) vuông góc với nhau
b) (d1),(d2),(d3) đồng quy tại 1 điểm trong mặt phẳng tọa độ Oxy
c) CMR: Đường thẳng (d3) luôn luôn đi qua 1 điểm cố định trong mặt phẳng tọa độ Oxy
\(\left(d_1\right):y=-x+1\)
\(\left(d_2\right):y=x-1\)
\(\left(d_3\right):y=\dfrac{k+1}{1-k}x+\dfrac{k+1}{k-1}\)
a) Để (d1) và (d3) vuông góc với nhau:
\(\Leftrightarrow\left(-1\right)\left(\dfrac{k+1}{1-k}\right)=-1\)\(\Leftrightarrow k=0\)(thỏa)
Vậy k=0
b)Giao điểm của (d1) và (d2) là nghiệm của hệ \(\left\{{}\begin{matrix}y=-x+1\\y=x-1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}y=0\\x=1\end{matrix}\right.\)
Để (d1);(d2);(d3) đồng quy\(\Leftrightarrow\) (d3) đi qua điểm (1;0)
\(\Rightarrow0=\dfrac{k+1}{1-k}.1+\dfrac{k+1}{k-1}\)\(\Leftrightarrow0=0\)(lđ)
Vậy với mọi k thì (d1);d2);(d3) luôn cắt nhau tại một điểm
c)Gỉa sử \(M\left(x_0;y_0\right)\) là điểm cố định mà (d3) luôn đi qua
Khi đó \(\left(k+1\right)x_0+\left(k-1\right)y_0=k+1\) luôn đúng với mọi k
\(\Leftrightarrow k\left(x_0+y_0-1\right)+x_0-y_0-1=0\) luôn đúng với mọi k
\(\Leftrightarrow\left\{{}\begin{matrix}x_0+y_0-1=0\\x_0-y_0-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_0=2\\y_0=1\end{matrix}\right.\)
Vậy \(M\left(2;1\right)\) là điểm cố định mà (d3) luôn đi qua.
Cho hàm số y=(2k-1)x+k (d)
a, Tìm k để đường thẳng (d) đi qua gốc tọa độ
b, Tìm k để đường thẳng (d) cắt trục hoành tại điểm có hoành độ = 3
c, Tìm k để đường thẳng (d) song song với đường thẳng y= 3/5x+4
d, Tìm k để điểm M (-3;2) thuộc đồ thị hàm số đã cho
a, b=k=0
b,(2k-1).3+k=0 => 3k=3 => k =1
c, 2k-1 = 3/5=> 2k = 8/5 => k = 4/5 khác 4 vậy k = 4/5
d, (2k-1)(-3) +k =2 => -5k =-1 => k =1/5
rên mặt phẳng tọa độ cho đường thẳng (d) có phương trình : 2kx + (k – 1)y = 2 (k là tham số) a) Với giá trị nào của k thì đường thẳng (d) song song với đường thẳng y=x\(\sqrt{3}\) b) Tìm k để khoảng cách từ gốc tọa độ đến (d) là lớn nhất.
cho đường thẳng y= (k+1)x+k
a. tìm giá trị của k để đường thẳng (d) đi qua điểm (1;2)
b.tìm giá trị của k để đường thẳng (d)song song với đường thẳng y= 2x+3
c. tìm điểm cố định mà (d) luôn đi qua với mọi k
a) (d) đi qua điểm (1;2)
<=> 2 = k + 1 + k
<=> 1 = 2k
<=> k = 0,5
Vậy k = 0,5 thì (d) đi qua (1;2)
b) Để (d) // đgth y = 2x + 3
\(\Leftrightarrow\hept{\begin{cases}k+1=2\\k\ne3\end{cases}\Leftrightarrow\hept{\begin{cases}k=1\\k\ne3\end{cases}\Rightarrow}k=1}\)
Vậy k =1 thì (d) // đgth y = 2x +3
c) Gọi điểm cố định là (d) đi qua là (x0;y0)
Ta có y0 = ( k +1) x0 + k
<=> y0 = kx0 + x0+k
<=> y0 - x0 - k ( x0 + 1) = 0 \(\forall\)k
Để pt nghiệm đúng với mọi k <=> \(\hept{\begin{cases}x_0+1=0\\y_0-x_0=0\end{cases}\Leftrightarrow\hept{\begin{cases}x_0=-1\\y_0=-1\end{cases}}}\)
Điểm cố định (d) luôn đi qua là ( -1;-1)
cho đường thẳng y=(m-2) x+2 (d) a, CMR: đường thẳng (d) luôn đi qua 1 điểm cố định với mọi m b,tìm già trị của m để khoảng cách từ gốc tọa độ đến đương thẳng (d) =1 c, tìm giá trị của m để khoảng cách từ gốc tọa độ đến đường thẳng m là lớn nhất
\(a,\) Gọi điểm cố định (d) luôn đi qua là \(A\left(x_0;y_0\right)\)
\(\Leftrightarrow y_0=\left(m-2\right)x_0+2\Leftrightarrow mx_0-2x_0+2-y_0=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0=0\\2-2x_0-y_0=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=0\\y_0=2\end{matrix}\right.\Leftrightarrow A\left(0;2\right)\)
Vậy \(A\left(0;2\right)\) là điểm cố định mà (d) lun đi qua
\(b,\) PT giao Ox,Oy: \(y=0\Leftrightarrow x=\dfrac{2}{2-m}\Leftrightarrow B\left(\dfrac{2}{2-m};0\right)\Leftrightarrow OB=\dfrac{2}{\left|m-2\right|}\\ x=0\Leftrightarrow y=2\Leftrightarrow C\left(0;2\right)\Leftrightarrow OC=2\)
Gọi H là chân đường cao từ O đến (d) \(\Leftrightarrow OH=1\)
Áp dụng HTL: \(\dfrac{1}{OH^2}=1=\dfrac{1}{OB^2}+\dfrac{1}{OC^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)
\(\Leftrightarrow m^2-4m+4+1=4\\ \Leftrightarrow m^2-4m+1=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2+\sqrt{3}\\m=2-\sqrt{3}\end{matrix}\right.\)
\(c,\) Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OC^2}+\dfrac{1}{OB^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)
Đặt \(OH^2=t\)
\(\Leftrightarrow\dfrac{1}{t}=\dfrac{m^2-4m+5}{4}\Leftrightarrow t=\dfrac{4}{\left(m-2\right)^2+1}\le\dfrac{4}{0+1}=4\\ \Leftrightarrow OH\le2\\ OH_{max}=2\Leftrightarrow m=2\)