Cho cấp số cộng - 1 ; x ; 5 ; y . . Kết quả nào sau đây đúng?
A. x = 1 ; y = 7
B. x = 2 ; y = 7
C. x = 4 ; y = 8
D. x = 2 ; y = 8
1) cho cấp số cộng \(\left(u_n\right)\) với \(u_1=2\) và \(u_7=-10\) công sai của cấp số cộng là
2) cho cấp số cộng \(\left(u_n\right)\) với \(u_1=1\) và d = 2 tổng \(S_{10}=u_1+u_2+u_3...+u_{10}\) bằng
3) cho cấp số cộng \(\left(u_n\right)\) có số hạng đầu \(u_1=3\) và d = 2. Tổng của 2019 số hạng đầu bằng
4) cho cấp số cộng 2;5;8;11;14... công sai của cấp số cộng đã cho bằng
5) cho cấp số cộng \(\left(u_n\right)\) với \(u_1=2\) và d = 9 khi đó số 2018 là số hạng thứ mấy trong dãy
6) cho cấp số cộng \(\left(u_n\right)\) có số hạng đầu \(u_1=3\) và d = 2
\(Bài.1:\\ u_7=u_1+6d\\ \Leftrightarrow-10=2+6d\\ \Rightarrow6d=-10-2=-12\\ Vậy:d=\dfrac{-12}{6}=-2\\ Bài.2:S_{10}=10.u_1+\dfrac{10.\left(10-1\right)}{2}.d=10.1+\dfrac{10.9}{2}.2=100\\ Bài.3:S_{2019}=2019.u_1+\dfrac{2019.\left(2019-1\right)}{2}.d\\ =2019.3+\dfrac{2019.2018}{2}.2=2019.2021=4080399\)
Bài 4:
\(d=u_2=u_1=5-2=3\)
Bài 5:
\(u_n=u_1+\left(n-1\right)d\\ \Leftrightarrow2018=2+\left(n-1\right).9\\ \Leftrightarrow2+9n-9=2018\\ \Leftrightarrow9n=2018-2+9\\ \Leftrightarrow9n=2025\\ \Leftrightarrow n=\dfrac{2025}{9}=225\)
Vậy: 2018 là số hạng thứ 225 của dãy
Bài 6:
Đề chưa có yêu cầu
4: d=u2-u1=3
5: Đặt 2018=2+(n-1)*9
=>9(n-1)=2016
=>n-1=224
=>n=225
=>2018 là số thứ 225
3:
\(S_{2019}=2019\left(\dfrac{2\cdot3+2018\cdot2}{2}\right)=4080399\)
2:
\(S_{10}=\dfrac{10\cdot\left(2\cdot1+9\cdot2\right)}{2}=10\left(1+9\right)=100\)
Cho cấp số cộng 1, 4, 7,... Số hạng thứ 100 của cấp số cộng là
A.297
B. 301.
C. 295.
D. 298.
Chọn D.
Cấp số cộng 1,4,7,.. có số hạng đầu u1 = 1 và công sai d = 3.
Cho cấp số cộng 1, 4, 7,... Số hạng thứ 100 của cấp số cộng là
A. 297
B. 301
C. 295
D. 298
Chọn D.
Cấp số cộng 1,4,7,.. có số hạng đầu u1 = 1 và công sai d = 3
Cho cấp số cộng \(u_1,u_2,u_3,...,u_n\) có công sai d, các số hạng của cấp số cộng đã cho đều khác 0. Với giá trị nào của d thì dãy số \(\dfrac{1}{u_1};\dfrac{1}{u_2};\dfrac{1}{u_3};...;\dfrac{1}{u_n}\) là một cấp số cộng?
Cho cấp số cộng \(u_1,u_2,u_3,...,u_n,...\) có công sai bằng 3. Biết dãy \(u_1,u_3,u_5,...,u_{2n+1}\) là cấp số cộng. Tính công sai của cấp số cộng đó?
Công sai của cấp số cộng đó là:
\(u_3-u_1=u_1+2d-u_1=2d=2\cdot3=6\)
Hmm, cái công thức Sn mỗi lần viết dài kinh :(
\(u_5=u_1+4d=15;u_9=u_1+8d=-1\) \(\Rightarrow\left\{{}\begin{matrix}d=...\\u_1=...\end{matrix}\right.\)
\(\Rightarrow u_{100}=u_1+99d=...\)
\(u_1=u_1\)
\(u_2=u_1+d\)
\(u_3=u_1+2d\)
.....
\(u_n=u_1+\left(n-1\right)d\)
\(\Rightarrow S_n=u_1+u_2+...+u_n=u_1+u_1+d+...+u_1.\left(n-1\right)d=n.u_1+d+2d+...+\left(n-1\right)d\)
\(=n.u_1+\left(1+2+...+\left(n-1\right)\right)d=n.u_1+\dfrac{d\left(n-1\right).n}{2}=\dfrac{n\left[2u_1+\left(n-1\right)d\right]}{2}\)
Thay số vô và ... bấm máy, chắc zậy :))
1) trong các dãy số sau, dãy nào là một cấp số cộng
a) -8,-6,-4,-2,0,2
b) 1,4,7,10,12,15
c) 1,1,1,1,2,2,2
2) cho cấp số cộng \(u_n=3n+1\) tìm 4 số hạng đầu và công sai của cấp số cộng
1, Dãy a nha với d= 2
2,
\(u_1=3.1+1=4\\ u_2=3.2+1=7\\ d=u_2-u_1=7-4=3\)
Theo đề, ta có: \(S_n=3003\)
=>\(n\cdot\dfrac{\left[2u1+\left(n-1\right)\cdot d\right]}{2}=3003\)
=>\(\dfrac{n\left[2+\left(n-1\right)\right]}{2}=3003\)
=>n(n+1)=6006
=>n^2+n-6006=0
=>(n-77)(n+78)=0
=>n=77(nhận) hoặc n=-78(loại)
Vậy: n=77
Cho cấp số cộng (un) có số hạng đầu là u1 = 1 và công sai d = 1. Tìm n sao cho tổng của n số hạng đầu tiên của cấp số cộng đó bằng 3003.
A. n = 79
B. n = 78
C. n = 77
D. n = 80
Chọn C
- Do công sai và số hạng đầu là d = 1, u 1 = 1 nên đây là tổng của n số tự nhiên đầu tiên là:
1) cho cấp số cộng \(\left(u_n\right)\) có \(u_1=-1\) và d =2. Tính \(u_6;u_{15};u_{80}\)
2) cho cấp số cộng \(\left(u_n\right)\) biết \(u_1=1\) và d = 4. Số 201 là số hạng thứ mấy
Xem lại đề câu 1
2,
\(u_{201}=u_1+\left(201-1\right).d=1+200.4=801\)