Cho cấp số cộng \(u_1,u_2,u_3,...,u_n,...\) có công sai bằng 3. Biết dãy \(u_1,u_3,u_5,...,u_{2n+1}\) là cấp số cộng. Tính công sai của cấp số cộng đó?
Tìm số hạng đầu và công bội của cấp số nhân biết:
\(a,\left\{{}\begin{matrix}u_1+u_3=10\\u^2_1+u^2_3=50\end{matrix}\right.\)
\(b,\left\{{}\begin{matrix}u_1+u_2+u_3=21\\\dfrac{1}{u_1}+\dfrac{1}{u_2}+\dfrac{1}{u_3}=\dfrac{7}{12}\end{matrix}\right.\)
(Giải giúp mk ý 2 với ạ!!!)
Cho dãy số (Un) với: \(u_n=sin\dfrac{n\pi}{3}+cos\dfrac{n\pi}{6}\)
1) Hãy tính \(u_1,u_2,u_3,u_4,u_5\)
2) Dự đoán công thức của số hạng tổng quát Un
cho dãy số được xác định bởi công thức Un = \(\dfrac{2^n-5^n}{2^n+5^n}\)
Tính tổng của dãy (SN)= \(\dfrac{1}{u_1-1}+\dfrac{1}{u_2-1}+\dfrac{1}{u_3-1}+....+\dfrac{1}{u_N-1}\)
Đáp án là \(\dfrac{-\left(2+3N\right).5^N+2^{N+1}}{6.5^N}\)
Tìm số hạng đầu, công sai của cấp số cộng biết:
\(a,\left\{{}\begin{matrix}u_1+u_5-u_3=10\\u_2+u_5=7\end{matrix}\right.\)
\(b,\left\{{}\begin{matrix}u_2+u_4=5\\u_1^2+u_5^2=25\end{matrix}\right.\)
Tìm số hạng đầu và công bội của cấp số nhân biết:
\(a,\left\{{}\begin{matrix}u_1+u_2+u_3+u_4=30\\u^2_1+u_2^2+u^2_3+u_4^2=340\end{matrix}\right.\)
\(b,\left\{{}\begin{matrix}u_1.u_2.u_3=64\\u_1+u_2+u_3\end{matrix}\right.=14\)
Cho cấp số nhân (Un) có công bội q=2. Gọi \(S=\dfrac{1}{u_1}+\dfrac{1}{u_2}+...+\dfrac{1}{u_{2020}}\) và \(P=u_1+2u_2+2u_3+...+2u_{2020}+u_{2021}\). Tính giá trị của S.P
Tìm số hạng đầu và công sai của các cấp số cộng sau, biết: \(\left\{{}\begin{matrix}S_{15}=585\\u_1^3+u_2^3=302094\end{matrix}\right.\) (d>0)
Tìm số hạng đầu và công sai của cấp số cộng sau: \(\left\{{}\begin{matrix}S_{15}=585\\u_1^3+u_2^3=302094\end{matrix}\right.\left(d>0\right)}\)