\(S=\dfrac{\dfrac{1}{u_1}\left[1-\left(\dfrac{1}{2}\right)^{2020}\right]}{1-\dfrac{1}{2}}=\dfrac{2\left(2^{2020}-1\right)}{2^{2020}u_1}\\ P=\left(u_1+u_2+...+u_{2020}\right)+\left(u_2+u_3+...+u_{2021}\right)\\ =\left(1+q\right)\left(u_1+u_2+...+u_{2020}\right)=3u_1\left(2^{2020}-1\right)\\ \rightarrow SP=\dfrac{3\left(2^{2020}-1\right)^2}{2^{2019}}\)