Chương 3: DÃY SỐ. CẤP SỐ CỘNG VÀ CẤP SỐ NHÂN

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngọc Ngô

Cho dãy số (Un) xác định như sau: \(\left(\sqrt{n+1}+\sqrt{n}\right).Un=\dfrac{2}{2n+1},n=1,2,3...\)

Chứng minh rằng \(U_1+U_2+...+U_{2010}< \dfrac{1005}{1006}\)

Akai Haruma
25 tháng 4 2018 lúc 18:09

Lời giải:

Ta có:

\((\sqrt{n+1}+\sqrt{n})U_n=\frac{2}{2n+1}\)

\(\Rightarrow U_n=\frac{2}{(2n+1)(\sqrt{n+1}+\sqrt{n})}=\frac{2(\sqrt{n+1}-\sqrt{n})}{2n+1}\)

\(=\frac{2(\sqrt{n+1}-\sqrt{n})}{(n+1)+n}<\frac{2(\sqrt{n+1}-\sqrt{n})}{2\sqrt{n(n+1)}}\) (áp dụng bđt am-gm thì \((n+1)+n\geq 2\sqrt{n(n+1)}\), dấu bằng không xảy ra vì \(n\neq n+1\))

hay \(U_n< \frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Do đó:
\(U_1+U_2+...+U_{2010}< \frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-...+\frac{1}{\sqrt{2010}}-\frac{1}{\sqrt{2011}}\)

\(\Leftrightarrow U_1+U_2+..+U_{2010}< 1-\frac{1}{\sqrt{2011}}< \frac{1005}{1006}\)

Ta có đpcm.


Các câu hỏi tương tự
Big City Boy
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Việt Phương
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
NGUYỄN MINH HUY
Xem chi tiết
phamthiminhanh
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết