Hmm, cái công thức Sn mỗi lần viết dài kinh :(
\(u_5=u_1+4d=15;u_9=u_1+8d=-1\) \(\Rightarrow\left\{{}\begin{matrix}d=...\\u_1=...\end{matrix}\right.\)
\(\Rightarrow u_{100}=u_1+99d=...\)
\(u_1=u_1\)
\(u_2=u_1+d\)
\(u_3=u_1+2d\)
.....
\(u_n=u_1+\left(n-1\right)d\)
\(\Rightarrow S_n=u_1+u_2+...+u_n=u_1+u_1+d+...+u_1.\left(n-1\right)d=n.u_1+d+2d+...+\left(n-1\right)d\)
\(=n.u_1+\left(1+2+...+\left(n-1\right)\right)d=n.u_1+\dfrac{d\left(n-1\right).n}{2}=\dfrac{n\left[2u_1+\left(n-1\right)d\right]}{2}\)
Thay số vô và ... bấm máy, chắc zậy :))