Trong khai triển x + 2 x 6 , tìm hệ số của x 3 2 x > 0 .
A. 160
B. 80
C. 60
D. 240
a.Tìm hệ số của số hạng chứa \(x^6\) trong khai triển \(\left(1+x^2\right)^{12}\)
b.Tìm hệ số của số hạng chứa \(x^6\) trong khai triển \(\left(2x-1\right)^{10}\)
HELP ME!
2. Trong khai triển nhị thức ( a +2)^n +6 ( n€N). Có tất cả 17 số hạng . Vậy n bằng?
6. Trong khai triển (2a -1)^6 tổng 3 số hạng đầu là?
7. Trong khai triển ( x - √y )^16 tổng hai số hạng cuối là
2/ \(\left(a+b\right)^k\Rightarrow k+1\left(so-hang\right)\)
\(\Rightarrow n+6+1=17\Rightarrow n=10\)
6/ \(\left(2a-1\right)^6=\sum\limits^6_{k=0}C^k_6.2^{6-k}.\left(-1\right)^k.a^{6-k}\)
\(\Rightarrow tong-3-so-hang-dau=C^0_6.2^6+C^1_6.2^5.\left(-1\right)+C^2_6.2^4.\left(-1\right)^2=...\)
7/ \(\left(x-\sqrt{y}\right)^{16}=\left(x-y^{\dfrac{1}{2}}\right)^{16}\)
\(\Rightarrow tong-2-so-hang-cuoi=C^{16}_{16}+C^{15}_{16}=...\)
Bài 1:
a.Tìm hệ số của số hạng chứa \(x^6\) trong khai triển \(\left(1+x^2\right)^{12}\)
b.Tìm hệ số của số hạng chứa \(x^6\) trong khai triển \(\left(2x-1\right)^{10}\)
Giúp mk vs ạ!!!
8. Trong khai triển (8a^2 - 1/2b)^6 hệ số của số hạng chứa a^9.b^3 là?
9. Trong khai triển ( x + 8/x^2)^9 số hạng ko chứa x là?
A. 4308
B. 86016
C. 84
D. 43008
Câu 8 là \(\left(8a^2-\dfrac{1}{2}b\right)^6\) hay \(\left(8a^2-\dfrac{1}{2b}\right)^6\) bạn? (tốt nhất là bạn dùng tính năng gõ công thức toán để đăng đề, hoặc chụp hình gửi đề trực tiếp lên, hiện nay hoc24 đã cho đăng đề bằng hình ảnh)
9.
\(\left(x+8.x^{-2}\right)^9=\sum\limits^9_{k=0}C_9^kx^{9-k}.8^k.x^{-2k}=\sum\limits^9_{k=0}C_9^k8^kx^{9-3k}\)
Số hạng ko chứa x \(\Rightarrow9-3k=0\Rightarrow k=3\)
Số hạng đó là: \(C_9^3.8^3=...\)
Cho khai triển (2x-1)^6.(3x^2+1)^5 . Tìm số hạng chứa x^4 trong khai triển .
\(\left(2x-1\right)^6\left(3x^2+1\right)^5=\sum\limits^6_{k=0}C_6^k\left(2x\right)^k\left(-1\right)^{6-k}\sum\limits^5_{i=0}C_5^i\left(3x^2\right)^i\)
\(=\sum\limits^6_{k=0}\sum\limits^5_{i=0}C_6^k.C_5^i.\left(-1\right)^{6-k}.2^k.3^i.x^{k+2i}\)
Số hạng chứa \(x^4\) thỏa mãn:
\(\left\{{}\begin{matrix}0\le k\le6\\0\le i\le5\\k+2i=4\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(0;4\right);\left(1;2\right);\left(2;0\right)\)
Hệ số:
\(C_6^4.C_5^0\left(-1\right)^4.2^4.3^0+C_6^2C_5^1\left(-1\right)^2.2^2.3^1+C_6^0.C_5^2.\left(-1\right)^0.2^0.3^2=...\)
Tìm các giá trị của x trong khai triển ( 2 l g ( 10 - 3 x ) + 2 ( x - 2 ) l g 3 5 ) n biết rằng số hạng thứ 6 trong khai triển bằng 21 và C n 1 , C n 2 , C n 3 theo thứ tự lập thành một cấp số cộng
A. x= 4, x= 7
B. x= 3, x= 5
C. x= 0, x= 2
D. x= 2
a)Tìm số hạng không chứa x trong khai triển (x+2/x)10
b)Tìm số hạng không chứa x trong khai triển (x+2/x2)6
c)Tìm hệ số của số hạng chứa x10 trong khai triển (3x3-2/x2)5
a: SHTQ là: \(C^k_{10}\cdot x^{10-k}\cdot\left(\dfrac{2}{x}\right)^k=C^k_{10}\cdot2^k\cdot x^{10-2k}\)
Số hạng ko chứa x tương ứng với 10-2k=0
=>k=5
=>SH đó là 8064
b: SHTQ là; \(C^k_6\cdot x^{6-k}\cdot\left(\dfrac{2}{x^2}\right)^k=C^k_6\cdot2^k\cdot x^{6-3k}\)
Số hạng ko chứa x tương ứng với 6-3k=0
=>k=2
=>Số hạng đó là 60
c: SHTQ là: \(C^k_5\cdot\left(3x^3\right)^{5-k}\cdot\left(-\dfrac{2}{x^2}\right)^k\)
\(=C^k_5\cdot3^{5-k}\cdot\left(-2\right)^k\cdot x^{15-5k}\)
SH chứa x^10 tương ứng với 15-5k=10
=>k=1
=>Hệ số là -810
Bài 2 a) Tìm hệ số của x^3 trong khai triển của (x+2/x^2)^6
b) Tìm hệ số của x^7 trong khai triển (3-2x)^15
c) Tìm số hạng không chứa x trong khai triển (2x-1/x^2)^6
(^: là mũ nhé mn,bài này mình vừa học ở trường nhưng chưa hiểu mn giúp chi tiết,cảm ơn mn ^•^)
\(\left(x+2.x^{-2}\right)^6=\sum\limits^6_{k=0}C_6^kx^k.2^{6-k}.\left(x^{-2}\right)^{6-k}=\sum\limits^6_{k=0}C_6^k2^{6-k}x^{3k-12}\)
Số hạng chứa \(x^3\Rightarrow3k-12=3\Rightarrow k=5\)
\(\Rightarrow\) Hệ số: \(C_6^5.2^1=12\)
\(\left(3-2x\right)^{15}=\sum\limits^{15}_{k=0}C_{15}^k3^k.\left(-2\right)^{15-k}.x^{15-k}\)
Số hạng chứa \(x^7\Rightarrow15-k=7\Rightarrow k=8\)
\(\Rightarrow\) Hệ số: \(C_{15}^8.3^8.\left(-2\right)^7\)
\(\left(2x-x^{-2}\right)^6=\sum\limits^6_{k=0}C_6^k2^k.x^k.\left(-1\right)^{6-k}.\left(x^{-2}\right)^{6-k}=\sum\limits^6_{k=0}C_6^k2^k\left(-1\right)^{6-k}.x^{3k-12}\)
Số hạng ko chứa x \(\Rightarrow3k-12=0\Rightarrow k=4\)
Hệ số: \(C_6^42^4\left(-1\right)^2=240\)
Tìm số hạng chứa x^9 trong khai triển (x^2+x-1)^6
Số hạng trong khai triển có dạng :
\(T_{k+1}=C_6^k.\left(x^2\right)^{6-k}.\left(x^{-1}\right)^k\)
\(=C_6^k.x^{12-2k}.x^{-k}\)
\(=C_6^k.x^{12-3k}\)
Số hạng chứa \(x^9\): \(\Leftrightarrow x^{12-3k}=x^9\)
\(\Leftrightarrow12-3k=9\)
\(\Leftrightarrow3k=12-9\)
\(\Leftrightarrow3k=3\)
\(\Leftrightarrow k=1\)
Hệ số của số hạng chứa \(x^9\)là : \(T_2=C^1_6=6\)
1) tìm hệ số của x^5 trong khai triển x(2x−1)6+(3x−1)8
2) tìm hệ số của x3 trong khai triển x(1+2x)n với n t/mAnx=12