Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hà Duyên
Xem chi tiết
Minh Trần
Xem chi tiết
Dương Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 7 2021 lúc 22:26

1.

Kiểm tra lại đề bài, câu này phải là \(\dfrac{sinx+2cosx+3}{2sinx+cosx+3}\) mới đúng

2.a

ĐKXĐ: \(cosx\ne0\)

\(\Leftrightarrow\dfrac{1}{cos^2x}=4tanx+6\)

\(\Leftrightarrow1+tan^2x=4tanx+6\)

\(\Leftrightarrow tan^2x-4tanx-5=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tanx=5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=arctan\left(5\right)+k\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
10 tháng 7 2021 lúc 22:29

2b.

Đặt \(x-\dfrac{\pi}{4}=t\Rightarrow x=t+\dfrac{\pi}{4}\)

\(sin^3t=\sqrt{2}sin\left(t+\dfrac{\pi}{4}\right)\)

\(\Leftrightarrow sin^3t=sint+cost\)

\(\Leftrightarrow sint\left(1-cos^2t\right)=sint+cost\)

\(\Leftrightarrow sint.cos^2t+cost=0\)

\(\Leftrightarrow cost\left(sint.cost+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cost=0\\sin2t=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}cos\left(x-\dfrac{\pi}{4}\right)=0\\sin\left(2x-\dfrac{\pi}{2}\right)=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}cos\left(x-\dfrac{\pi}{4}\right)=0\\cos2x=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow...\)

Nguyễn Việt Lâm
10 tháng 7 2021 lúc 22:33

2c.

ĐKXĐ: \(sin4x\ne0\Leftrightarrow x\ne\dfrac{k\pi}{4}\)

\(\dfrac{4sinx.cos2x}{sin4x}+\dfrac{2cos2x}{sin4x}=\dfrac{2}{sin4x}\)

\(\Leftrightarrow2sinx.cos2x+cos2x=1\)

\(\Leftrightarrow2sinx.cos2x+1-2sin^2x=1\)

\(\Leftrightarrow sinx\left(cos2x-sinx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\left(loại\right)\\cos2x-sinx=0\end{matrix}\right.\)

\(\Leftrightarrow1-2sin^2x-sinx=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\left(loại\right)\\sinx=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow x=\dfrac{\pi}{6}+k2\pi\)

Dương Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 6 2021 lúc 21:35

1. 

ĐKXĐ: \(x\ne k\pi\)

\(\Leftrightarrow\left(2cos2x-1\right)\left(sinx-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=\dfrac{1}{2}\\sinx=3>1\left(ktm\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{\pi}{3}+k2\pi\\2x=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k\pi\\x=-\dfrac{\pi}{6}+k\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
28 tháng 6 2021 lúc 21:43

2. Bạn kiểm tra lại đề, pt này về cơ bản ko giải được.

3.

ĐKXĐ: \(x\ne\dfrac{k\pi}{2}\)

\(\dfrac{3\left(sinx+\dfrac{sinx}{cosx}\right)}{\dfrac{sinx}{cosx}-sinx}-2cosx=2\)

\(\Leftrightarrow\dfrac{3\left(1+cosx\right)}{1-cosx}+2\left(1+cosx\right)=0\)

\(\Leftrightarrow\left(1+cosx\right)\left(\dfrac{3}{1-cosx}+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=-1\left(loại\right)\\cosx=\dfrac{5}{2}\left(loại\right)\end{matrix}\right.\)

Vậy pt đã cho vô nghiệm

Nguyễn Việt Lâm
28 tháng 6 2021 lúc 21:45

4.

\(\Leftrightarrow\left(sin^2x+cos^2x+2sinx.cosx\right)+\left(sinx+cosx\right)+\left(cos^2x-sin^2x\right)=0\)

\(\Leftrightarrow\left(sinx+cosx\right)^2+\left(sinx+cosx\right)+\left(sinx+cosx\right)\left(cosx-sinx\right)=0\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(sinx+cosx+1+cosx-sinx\right)=0\)

\(\Leftrightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)\left(2cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\dfrac{\pi}{4}\right)=0\\cosx=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=\dfrac{2\pi}{3}+k2\pi\\x=-\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)

Dương Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 7 2021 lúc 22:32

a.

Đặt \(y=\dfrac{2sinx+cosx}{sinx-cosx+3}\)

\(\Leftrightarrow y.sinx-y.cosx+3y=2sinx+cosx\)

\(\Leftrightarrow\left(2-y\right)sinx+\left(y+1\right)cosx=3y\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(\left(2-y\right)^2+\left(y+1\right)^2\ge9y^2\)

\(\Leftrightarrow7y^2+2y-5\le0\)

\(\Leftrightarrow-1\le y\le\dfrac{5}{7}\) (đpcm)

Nguyễn Việt Lâm
9 tháng 7 2021 lúc 22:37

b.

Hoàn toàn tương tự câu a:

Đặt \(y=\dfrac{2sinx+cosx+2}{2cosx-sinx+4}\)

\(\Leftrightarrow2y.cosx-y.sinx+4y=2sinx+cosx+2\)

\(\Leftrightarrow\left(y+2\right)sinx+\left(1-2y\right)cosx=4y-2\)

Theo đk có nghiệm pt lượng giác bậc nhất:

\(\left(y+2\right)^2+\left(1-2y\right)^2\ge\left(4y-2\right)^2\)

\(\Leftrightarrow11y^2-16y-1\le0\)

\(\Leftrightarrow\dfrac{8-5\sqrt{3}}{11}\le y\le\dfrac{8+5\sqrt{3}}{11}\)

Đề bài chắc sai, em kiểm tra lại số liệu đề câu b nhé

Thầy Tùng Dương
Xem chi tiết
Phan Thu Minh
23 tháng 3 2022 lúc 10:07

Tìm hiệu của số tròn chục lớn nhất có 2 chữ số 

Khách vãng lai đã xóa
Cao Thị Kim Ngân
18 tháng 7 2022 lúc 10:42

Vậy P không phụ thuộc vào x.

Dương Nguyễn
Xem chi tiết
Lê Thị Thục Hiền
11 tháng 7 2021 lúc 1:12

a) \(\left|sinx-cosx\right|+\left|sinx+cosx\right|=2\)

\(\Leftrightarrow\left(sinx-cosx\right)^2+2\left|sinx-cosx\right|\left|sinx+cosx\right|+\left(cosx+sinx\right)^2=4\)

\(\Leftrightarrow2\left(sin^2x+cos^2x\right)+2\left|\left(sinx-cosx\right)\left(sinx+cosx\right)\right|=4\)

\(\Leftrightarrow\left|sin^2x-cos^2x\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}sin^2x-cos^2x=1\\sin^2x-cos^2x=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}sin^2x-cos^2x=sin^2x+cos^2x\\sin^2x-cos^2x=-\left(sin^2x+cos^2x\right)\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}cos^2x=0\\sin^2x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sinx=0\end{matrix}\right.\)\(\Rightarrow cosx.sinx=0\Rightarrow sin2x=0\)

\(\Rightarrow x=\dfrac{k\pi}{2},k\in Z\)

Vậy...

b) ĐK:\(x\ne\dfrac{k\pi}{2};k\in Z\)

Pt \(\Leftrightarrow\dfrac{sinx}{cosx}-\dfrac{3cosx}{sinx}=4\left(sinx+\sqrt{3}cosx\right)\)

\(\Leftrightarrow\dfrac{sin^2x-3cos^2x}{cosx.sinx}=4\left(sinx+\sqrt{3}cosx\right)\)

\(\Leftrightarrow\dfrac{\left(sinx-\sqrt{3}cosx\right)\left(sinx+\sqrt{3}cosx\right)}{sinx.cosx}=4\left(sinx+\sqrt{3}cosx\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+\sqrt{3}cosx=0\left(1\right)\\\dfrac{sinx-\sqrt{3}cosx}{sinx.cosx}=4\left(2\right)\end{matrix}\right.\)

Từ \(\left(1\right)\Leftrightarrow tanx=-\sqrt{3}\Leftrightarrow x=-\dfrac{\pi}{3}+k\pi,k\in Z\)

Từ (2)\(\Leftrightarrow sinx-\sqrt{3}cosx=4sinx.cosx\)

\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx=2sinx.cosx\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=sin2x\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{3}+k2\pi\\x=\dfrac{4\pi}{9}+\dfrac{k2\pi}{3}\end{matrix}\right.\)\(\left(k\in Z\right)\)

Vậy \(\left[{}\begin{matrix}x=-\dfrac{\pi}{3}+k\pi\\x=\dfrac{4\pi}{9}+\dfrac{k2\pi}{3}\end{matrix}\right.\)\(\left(k\in Z\right)\)

c) ĐK: \(x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\left(k\in Z\right)\)

Pt \(\Leftrightarrow\left(\sqrt{2}sinx-1\right)^2+\left(\sqrt{3}tan2x-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2}sinx-1=0\\\sqrt{3}tan2x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}sinx=\dfrac{1}{\sqrt{2}}\\tan2x=\dfrac{1}{\sqrt{3}}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k2\pi\\x=\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\\x=\dfrac{\pi}{12}+k\pi\end{matrix}\right.\)\(\Rightarrow x\in\varnothing\)

Vậy pt vô nghiệm

Đạt Nguyễn Tiến
Xem chi tiết
An Sơ Hạ
Xem chi tiết
Akai Haruma
29 tháng 3 2019 lúc 19:30

Lời giải:

a)

\(\frac{1-\cos x}{\sin x}=\frac{(1-\cos x)(1+\cos x)}{\sin x(1+\cos x)}=\frac{1-\cos ^2x}{\sin x(1+\cos x)}=\frac{\sin ^2x}{\sin x(1+\cos x)}=\frac{\sin x}{1+\cos x}\)

b)

\((\sin x+\cos x-1)(\sin x+\cos x+1)=(\sin x+\cos x)^2-1^2\)

\(=\sin ^2x+\cos ^2x+2\sin x\cos x-1=1+2\sin x\cos x-1=2\sin x\cos x\)

c)

\(\frac{\sin ^2x+2\cos x-1}{2+\cos x-\cos ^2x}=\frac{1-\cos ^2x+2\cos x-1}{2+\cos x-\cos ^2x}=\frac{-\cos ^2x+2\cos x}{2+\cos x-\cos ^2x}\)

\(=\frac{\cos x(2-\cos x)}{(2-\cos x)(\cos x+1)}=\frac{\cos x}{\cos x+1}\)

d)

\(\frac{\cos ^2x-\sin ^2x}{\cot ^2x-\tan ^2x}=\frac{\cos ^2x-\sin ^2x}{\frac{\cos ^2x}{\sin ^2x}-\frac{\sin ^2x}{\cos ^2x}}=\frac{\sin ^2x\cos ^2x(\cos ^2x-\sin ^2x)}{\cos ^4x-\sin ^4x}\)

\(=\frac{\sin ^2x\cos ^2x(\cos ^2x-\sin ^2x)}{(\cos ^2x-\sin ^2x)(\cos ^2x+\sin ^2x)}=\frac{\sin ^2x\cos ^2x}{\sin ^2x+\cos ^2x}=\sin ^2x\cos ^2x\)

e)

\(1-\cot ^4x=1-\frac{\cos ^4x}{\sin ^4x}=\frac{\sin ^4x-\cos ^4x}{\sin ^4x}=\frac{(\sin ^2x-\cos ^2x)(\sin ^2x+\cos ^2x)}{\sin ^4x}\)

\(=\frac{\sin ^2x-\cos ^2x}{\sin ^4x}=\frac{\sin ^2x-(1-\sin ^2x)}{\sin ^4x}=\frac{2\sin ^2x-1}{\sin ^4x}=\frac{2}{\sin ^2x}-\frac{1}{\sin ^4x}\)

Ta có ddpcm.

Sách Giáo Khoa
Xem chi tiết
Minh Hải
9 tháng 4 2017 lúc 20:47

a) Dễ thấy cosx = 0 không thỏa mãn phương trình đã cho nên chiaw phương trình cho cos2x ta được phương trình tương đương 2tan2x + tanx - 3 = 0.

Đặt t = tanx thì phương trình này trở thành

2t2 + t - 3 = 0 ⇔ t ∈ {1 ; }.

Vậy

b) Thay 2 = 2(sin2x + cos2x), phương trình đã cho trở thành

3sin2x - 4sinxcosx + 5cos2x = 2sin2x + 2cos2x

⇔ sin2x - 4sinxcosx + 3cos2x = 0

⇔ tan2x - 4tanx + 3 = 0

⇔ x = + kπ ; x = arctan3 + kπ, k ∈ Z.

c) Thay sin2x = 2sinxcosx ; = (sin2x + cos2x) vào phương trình đã cho và rút gọn ta được phương trình tương đương

sin2x + 2sinxcosx - cos2x = 0 ⇔ tan2x + 4tanx - 5 = 0 ⇔

⇔ x = + kπ ; x = arctan(-5) + kπ, k ∈ Z.

d) 2cos2x - 3√3sin2x - 4sin2x = -4

⇔ 2cos2x - 3√3sin2x + 4 - 4sin2x = 0

⇔ 6cos2x - 6√3sinxcosx = 0 ⇔ cosx(cosx - √3sinx) = 0