Cộng các phân thức sau:
a) b 3 + b b 3 + 1 + b b 2 − b + 1 + 2 b + 1 với b ≠ − 1 ;
b) 2 ( u − v ) ( u − w ) + 2 ( v − w ) ( w − u ) + 2 ( w − u ) ( u − v ) với u ≠ v ≠ w .
Thực hiện các phép cộng, trừ phân thức sau:
a) \(\dfrac{{a - 1}}{{a + 1}} + \dfrac{{3 - a}}{{a + 1}}\) b) \(\dfrac{b}{{a - b}} + \dfrac{a}{{b - a}}\) c) \(\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}} - \dfrac{{{{\left( {a - b} \right)}^2}}}{{ab}}\)
a) \(\dfrac{a-1}{a+1}+\dfrac{3-a}{a+1}\)
\(=\dfrac{a-1+3-a}{a+1}\)
\(=\dfrac{2}{a+1}\)
b) \(\dfrac{b}{a-b}+\dfrac{a}{b-a}\)
\(=\dfrac{b}{a-b}+\dfrac{-a}{a-b}\)
\(=\dfrac{b-a}{a-b}\)
\(=-1\)
c) \(\dfrac{\left(a+b\right)^2}{ab}-\dfrac{\left(a-b\right)^2}{ab}\)
\(=\dfrac{\left[\left(a+b\right)-\left(a-b\right)\right]\left[\left(a+b\right)+\left(a-b\right)\right]}{ab}\)
\(=\dfrac{4ab}{ab}\)
\(=4\)
`a, (a-1)/(a+1) + (3-a)/(a+1)`
`= (a-1+3-a)/(a+1)`
`=2/(a+1)`
`b, b/(a-b) + a/(b-a)`
`= b/(a-b) - a/(a-b)`
`= (b-a)/(a-b)`
`c, (a+b)^2/(ab) -(a-b)^2/(ab)`
`=(a^2+2ab+b^2-a^2+2ab-b^2)/(ab)`
`= (4ab)/(ab)`
Thực hiện các phép cộng, trừ phân thức sau:
a) \(\dfrac{a}{{a - 3}} - \dfrac{3}{{a + 3}}\) b) \(\dfrac{1}{{2x}} + \dfrac{2}{{{x^2}}}\) c) \(\dfrac{4}{{{x^2} - 1}} - \dfrac{2}{{{x^2} + x}}\)
`a, a/(a-3) - 3/(a+3) = (a(a+3) - 3(a-3))/(a^2-9)`
`= (a^2+9)/(a^2-9)`
`b, 1/(2x) + 2/x^2 = x/(2x^2) + 4/(2x^2) = (x+4)/(2x^2)`
`c, 4/(x^2-1) - 2/(x^2+x) = (4x)/(x(x-1)(x+1)) - (2(x-1))/(x(x+1)(x-1))`
`= (2x+2)/(x(x-1)(x+1)`
`= 2/(x(x-1))`
Thực hiện các phép tính cộng, trừ phân thức sau:
a) \(\dfrac{x}{{x + 3}} + \dfrac{{2 - x}}{{x + 3}}\) b) \(\dfrac{{{x^2}y}}{{x - y}} - \dfrac{{x{y^2}}}{{x - y}}\) c) \(\dfrac{{2x}}{{2x - y}} + \dfrac{y}{{y - 2x}}\)
\(a,\dfrac{x}{x+3}+\dfrac{2-x}{x+3}\\ =\dfrac{x+2-x}{x+3}\\ =\dfrac{2}{x+3}\\b,\dfrac{x^2y}{x-y}-\dfrac{xy^2}{x-y}\\ =\dfrac{x^2y-xy^2}{x-y}\\ =\dfrac{xy\left(x-y\right)}{x-y}\\ =xy\\ c,\dfrac{2x}{2x-y}+\dfrac{y}{y-2x}\\=\dfrac{2x}{2x-y}-\dfrac{y}{2x-y}\\ =\dfrac{2x-y}{2x-y}\\ =1 \)
`a, x/(x+3) + (2-x)/(x+3) = (x+2-x)/(x+3) = 2/(x+3)`
`b, (x^2y)/(x-y) - (xy^2)/(x-y) = (x^2y-xy^2)/(x-y) = (xy(x-y))/(x-y)= xy`
`c, (2x)/(2x-y) - (y)/(2x-y)`
`= (2x-y)/(2x-y) = 1`
Thực hiện các phép cộng, trừ phân thức sau:
a) \(\dfrac{1}{{2a}} + \dfrac{2}{{3b}}\)
b) \(\dfrac{{x - 1}}{{x + 1}} - \dfrac{{x + 1}}{{x - 1}}\)
c) \(\dfrac{{x + y}}{{xy}} - \dfrac{{y + z}}{{yz}}\)
d) \(\dfrac{2}{{x - 3}} - \dfrac{{12}}{{{x^2} - 9}}\)
e) \(\dfrac{1}{{x - 2}} + \dfrac{2}{{{x^2} - 4x + 4}}\)
a: \(=\dfrac{3b+4a}{6ab}\)
b: \(=\dfrac{x^2-2x+1-x^2-2x-1}{x^2-1}=\dfrac{-4x}{x^2-1}\)
c: \(=\dfrac{xz+yz-xy-xz}{xyz}=\dfrac{yz-xy}{xyz}=\dfrac{z-x}{xz}\)
d: \(=\dfrac{2x+6-12}{\left(x-3\right)\left(x+3\right)}=\dfrac{2x-6}{\left(x-3\right)\left(x+3\right)}=\dfrac{2}{x+3}\)
e: \(=\dfrac{x-2+2}{\left(x-2\right)^2}=\dfrac{x}{\left(x-2\right)^2}\)
rút gọn các phân thức sau:
a) 8xy(3x-1)3/12x3(3x-1)
b) x2-25/x2-5x
giải chi tiết các bước cho mình nhé
a: \(=\dfrac{\left(3x-1\right)^3}{3x-1}\cdot\dfrac{8xy}{12x^3}=\dfrac{2y\left(3x-1\right)^2}{3x^2}\)
b: \(=\dfrac{\left(x-5\right)\left(x+5\right)}{x\left(x-5\right)}=\dfrac{x+5}{x}\)
*Cộng các phân thức sau:a) x^2/x+1 + 2x/x^2-1 + 1/1+x+1 b) 2x+y/2x^2-y + 8y/y^2-4x^2+2x-y/2x^2+xy
a) \(\dfrac{x^2}{x+1}+\dfrac{2x}{x^2-1}+\dfrac{1}{1+x+1}\) \(=\dfrac{x^2.\left(x-1\right)\left(x+2\right)}{\left(x+1\right).\left(x-1\right)\left(x+2\right)}+\dfrac{2x.\left(x+2\right)}{\left(x-1\right).\left(x+1\right).\left(x+2\right)}+\dfrac{\left(x-1\right).\left(x+1\right)}{\left(x-1\right)\left(x+1\right).\left(x+2\right)}\)
\(=\dfrac{x^2.\left(x-1\right).\left(x+2\right)+2x.\left(x+2\right)+\left(x-1\right)\left(x+1\right)}{\left(x+1\right).\left(x-1\right).\left(x+2\right)}\)
\(=\dfrac{x^4+x^3-2x^2+2x^2+4x+x^2-1}{\left(x-1\right)\left(x+1\right).\left(x+2\right)}\)
\(=\dfrac{x^4+x^3+x^2+4x-1}{\left(x^2-1\right).\left(x+2\right)}\)
\(=\dfrac{x^4+x^3+x^2+4x-1}{x^3+2x^2-x-2}\)
Rút gọn các phân thức sau:
a) \(\dfrac{x^2-4xy+4y^2}{xy-2y^2}\)
b) \(\dfrac{x^3-36x}{x^2+6x}\)
a)\(\dfrac{x^2-4xy+4y^2}{xy-2y^2}\)
=\(\dfrac{x^2-4xy+\left(2y\right)^2}{y\left(x-2y\right)}\)
=\(\dfrac{\left(x-2y\right)^2}{y\left(x-2y\right)}\)
=\(\dfrac{x-2y}{y}\)
b)\(\dfrac{x^3-36x}{x^2+6x}\)
=\(\dfrac{x\left(x^2-6^2\right)}{x\left(x+6\right)}\)
=\(\dfrac{x\left(x+6\right)\left(x-6\right)}{x\left(x+6\right)}\)
= \(x-6\)
#Fiona
Chúc bạn học tốt !
Cho các biểu thức sau:
a. A = \(\dfrac{32}{a-1}\)
b. B = \(\dfrac{13}{a-1}\)
c. C = \(\dfrac{a+3}{a-2}\)
Tìm a ∈ Z để A, B, C là phân số
Để A,B,C là phân số thì \(\left\{{}\begin{matrix}a-1< >0\\a-2< >0\end{matrix}\right.\Leftrightarrow a\in Z\backslash\left\{1;2\right\}\)
Rút gọn các phân thức sau:
a) \(\dfrac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\)
b) \(\dfrac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(x+z\right)^2+\left(z-x\right)^2}\)
a: \(=\dfrac{\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)-3abc}{a^2+b^2+c^2-ab-bc-ac}\)
\(=\dfrac{\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)}{a^2+b^2+c^2-ab-bc-ac}\)
\(=\dfrac{\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)}{a^2+b^2+c^2-ab-bc-ac}\)
=a+b+c
b:
Sửa đề: \(=\dfrac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)
\(=\dfrac{\left(x-y\right)^3+z^3+3xy\left(x-y\right)+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)
\(=\dfrac{\left(x-y+z\right)\left(x^2-2xy+y^2-xz+yz+z^2\right)+3xy\left(x-y+z\right)}{2\left(x^2+y^2+z^2+xy+yz-xz\right)}\)
\(=\dfrac{\left(x-y+z\right)\left(x^2+y^2+z^2+xy-xz+yz\right)}{2\left(x^2+y^2+z^2+xy+yz-xz\right)}\)
\(=\dfrac{x-y+z}{2}\)
a) \(\dfrac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\)
\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{a^2+b^2+c^2-ab-bc-ca}\)
\(=a+b+c\)
Bài 1: Tìm điều kiện để các phân thức sau có ý nghĩa
a)5x-3/2x^2-x b)x^2-5x+6/x^2-1
c)2/(x+1)(x-3) d)2x+1/x^2-5x+6
Bài 2: Dùng định nghĩa hai phân thức bằng nhau chứng minh các đẳng thức sau:
a)x-2/-x=2^3-x^3/x(x^2+2x+4) (với x =/0)
b)3x/x+y=-3x(x+y)/y^2-x^2 (với x=/ +_ y)
c)x+y/3a=3a(x+y^2)/9a^2(x+y) (với a=/ 0,x=/-y)
Bài 1:
c: ĐKXĐ: \(x\notin\left\{-1;3\right\}\)