Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn long
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 5 2021 lúc 20:10

Từ phương trình \(\Rightarrow a^2=25\Rightarrow a=5\)

Độ dài trục lớn: \(2a=10\)

Kimian Hajan Ruventaren
Xem chi tiết
Kayla Phuong
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 4 2019 lúc 20:16

Thay \(x=-4\) vào pt elip ta được:

\(\frac{y^2}{9}=1-\frac{16}{25}=\frac{9}{25}\Rightarrow\left[{}\begin{matrix}y=\frac{9}{5}\\y=-\frac{9}{5}\end{matrix}\right.\)

\(\Rightarrow MN=2.\frac{9}{5}=\frac{18}{5}\)

Sách Giáo Khoa
Xem chi tiết
Phương Trâm
30 tháng 3 2017 lúc 17:10

Hỏi đáp Toán

Trà Giang
30 tháng 3 2017 lúc 17:41

Ta có: a2 = 16 => a = 4,b = 9 => b = 3 .

Mặt khác: c2 = a2 - b2 = 16 - 9 = 7 => c = \(\sqrt{7}\)

Tọa độ các đỉnh: A1 (-4;0), A2 (4;0), B1 (0;-3), B1 (0;-3), B2 (0;3) .

Tọa độ tiêu điểm: F1(-\(\sqrt{7}\);0),F2(\(\sqrt{7}\);0) .

Cho hình sau: undefined

nguyen ngoc linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 4 2023 lúc 7:41

loading...  

Thầy Cao Đô
Xem chi tiết
Xyz OLM
20 tháng 4 2023 lúc 21:22

Có \(c=\sqrt{a^2-b^2}=\sqrt{11}\)

Tiêu điểm \(F_1\left(\sqrt{11},0\right);F_2\left(-\sqrt{11},0\right)\)

Tiêu cự \(F_1F_2=2\sqrt{11}\)

Trục lớn : 2a = 12

Trục bé 2b = 10

Tâm sai \(e=\dfrac{c}{a}=\dfrac{\sqrt{11}}{6}\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
30 tháng 9 2023 lúc 22:58

Từ phương trình chính tắc của (E) ta có: \(a = 7,b = 5 \Rightarrow c = 2\sqrt 6 {\rm{ }}(do{\rm{ }}{{\rm{c}}^2} + {b^2} = {a^2})\)

Vậy ta có tọa độ các giao điểm của (E) với trục Ox, Oy là: \({A_1}\left( { - 7;{\rm{ }}0} \right)\)\({A_2}\left( {7;{\rm{ }}0} \right)\)\({B_1}\left( {0; - {\rm{ 5}}} \right)\)\({B_2}\left( {0;{\rm{ 5}}} \right)\)

Hai tiêu điểm của (E) có tọa độ là: \({F_1}\left( { - 2\sqrt 6 ;0} \right),{F_2}\left( {2\sqrt 6 ;0} \right)\)

HỒ ĐĂNG BẢO
Xem chi tiết
Mai Anh
Xem chi tiết
Mai Anh
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 10 2021 lúc 19:28

Gọi \(M\left(x;y\right)\) là 1 điểm bất kì thuộc (E) \(\Rightarrow\dfrac{x^2}{9}+\dfrac{y^2}{4}=1\) (1)

Gọi \(M'\left(x';y'\right)\) là ảnh của M qua phép tịnh tiến nói trên \(\Rightarrow M'\in\left(E'\right)\)

\(\left\{{}\begin{matrix}x'=x+2\\y'=y+1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=x'-2\\y=y'-1\end{matrix}\right.\)

Thế vào (1):

\(\dfrac{\left(x'-2\right)^2}{9}+\dfrac{\left(y'-1\right)^2}{4}=1\)

Hay pt (E') có dạng: \(\dfrac{\left(x-2\right)^2}{9}+\dfrac{\left(y-1\right)^2}{4}=1\)