Phân tích các đa thức sau thành nhân tử:
a) 2 ( x - 1 ) 3 - 5 ( x - 1 ) 2 - (x - 1);
b) x ( y - x ) 3 - y ( x - y ) 2 + xy(x - y);
c) xy(x + y)- 2x - 2y;
d) x ( x + y ) 2 - y ( x + y ) 2 + y 2 (x - y).
1A. Phân tích các đa thức sau thành nhân tử:
a) x3+2x; b) 3x - 6y;
c) 5(x + 3y)- 15x(x + 3y); d) 3(x-y)- 5x(y-x).
1B. Phân tích các đa thức sau thành nhân tử:
a) 4x2 - 6x; b) x3y - 2x2y2 + 5xy;
c) 2x2(x +1) + 4x(x +1); d) 2 x(y - 1) - 2
y(1 - y).
5 5
2A. Phân tích các đa thức sau thành nhân tử: a) 2(x -1)3 - 5(x -1)2 - (x - 1);
b) x(y - x)3 - y(x - y)2 + xy(x - y);
c) xy(x + y)- 2x - 2y;
d) x(x + y)2 - y(x + y)2 + y2 (x - y).
2B. Phân tích đa thức thành nhân tử: a) 4(2-x)2 + xy - 2y;
b) x(x- y)3 - y(y - x)2 - y2(x - y);
c) x2y-xy2 - 3x + 3y;
d) x(x + y)2 - y(x + y) 2 + xy - x 2 .
1A:
a: \(x^3+2x=x\left(x^2+2\right)\)
b: \(3x-6y=3\left(x-2y\right)\)
c: \(5\left(x+3y\right)-15x\left(x+3y\right)\)
\(=5\left(x+3y\right)\left(1-3x\right)\)
d: \(3\left(x-y\right)-5x\left(y-x\right)\)
\(=3\left(x-y\right)+5x\left(x-y\right)\)
\(=\left(x-y\right)\left(5x+3\right)\)
1A. a. x(x2+2)
b. 3(x-2y)
c. 5(x+3y)(1-3x)
d. (x-y) (3-5x)
1B. a. 2x(2x-3)
b.xy(x2-2xy+5)
c. 2x(x+1)(x+2)
d. 2x(y-1)+2y(y-1)=2(y-1)(x-y)
1B:
a: \(4x^2-6x=2x\left(2x-3\right)\)
b: \(x^3y-2x^2y^2+5xy\)
\(=xy\left(x^2-2xy+5\right)\)
Bài 1. Phân tích các đa thức sau thành nhân tử:
a) 4a2-6b b) m3n-2m2n2-mn
Bài 2.Phân tích các đa thức sau thành nhân tử:
a) 4(2-u)2+uv-2v
b) a(a-b)3-b(b-a)2-b2(a-b)
Bài 1:
a: \(4a^2-6b=2\left(2a^2-3b\right)\)
b: \(m^3n-2m^2n^2-mn\)
\(=mn\left(m^2-2mn-1\right)\)
Bài 1:
a) \(4a^2-6b=2\left(a^2-3b\right)\)
b) \(=mn\left(m^2-2mn-1\right)\)
Bài 2:
a) \(=4\left(u-2\right)^2+v\left(u-2\right)=\left(u-2\right)\left(4u-8+v\right)\)
b) \(=a\left(a-b\right)^3-b\left(a-b\right)^2-b^2\left(a-b\right)=\left(a-b\right)\left[a\left(a-b\right)^2-b\left(a-b\right)-b^2\right]=\left(a-b\right)\left(a^3-2a^2b+ab^2-ab+b^2-b^2\right)=\left(a-b\right)\left(a^3-2a^2b+ab^2-ab\right)\)
Phân tích các đa thức sau thành nhân tử:
a) \({a^3} - {a^2}b + a - b\) b) \({x^2} - {y^2} + 2y - 1\)
`a, a^3 - a^2b + a - b`
`= a^2(a-b) + (a-b)`
`= (a^2+1)(a-b)`
`b, x^2 - y^2 + 2y - 1`
`= x^2 - (y-1)^2`
`= (x-y+1)(x+y-1)`
Phân tích các đa thức sau thành nhân tử:
a) \({x^2} - xy + x - y\)
b) \({x^2} + 2xy - 4x - 8y\)
c) \({x^3} - {x^2} - x + 1\)
a) \(x^2-xy+x-y\)
\(=\left(x^2+x\right)-\left(xy+y\right)\)
\(=x\left(x+1\right)-y\left(x+1\right)\)
\(=\left(x+1\right)\left(x-y\right)\)
b) \(x^2+2xy-4x-8y\)
\(=x\left(x+2y\right)-4\left(x+2y\right)\)
\(\left(x-4\right)\left(x+2y\right)\)
c) \(x^3-x^2-x+1\)
\(=x^2\left(x-1\right)-\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-1\right)\)
\(=\left(x-1\right)^2\left(x+1\right)\)
Phân tích các đa thức sau thành nhân tử:
a) x²-7x+6
x-3√3x-12√3 b)x2+4x-2
Lời giải:
a.
$x^2-7x+6=(x^2-x)-(6x-6)=x(x-1)-6(x-1)=(x-1)(x-6)$
b.
$x-3\sqrt{3}x-12\sqrt{3}$ không phân tích được thành nhân tử
c.
$x^2+4x-2$ không phân tích được thành nhân tử với các hệ số nguyên.
hãy phân tích các đa thức sau thành nhân tử:
a) 2/5x(y-1)-2/5y(y-1)
b) x^3 + 2x^2y+ xy^2 - 9x
a: \(=\dfrac{2}{5}\left(xy-x-y^2+1\right)\)
\(=\dfrac{2}{5}\left[x\left(y-1\right)-\left(y-1\right)\left(y+1\right)\right]\)
\(=\dfrac{2}{5}\left(y-1\right)\left(x-y-1\right)\)
b: \(=x\left(x^2+2xy+y^2-9\right)\)
\(=x\left(x+y-3\right)\left(x+y+3\right)\)
Phân tích các đa thức sau thành nhân tử:
a) \(8{x^3} - 1\)
b) \({x^3} + 27{y^3}\)
c) \({x^3} - {y^6}\)
`a, 8x^3 - 1 = (2x-1)(4x^2 + 2x - 1)`
`b, x^3 + 27y^3 = (x+3y)(x^3 - 3xy + 9y^2)`
`c, x^3 - y^6 = (x-y^2)(x+xy^2 + y^4)`
Phân tích các đa thức sau thành nhân tử:
a)6x3y2.(2-x)+9x2y2.(x-2)
b)5x3+20x2+20xy-5xy2
c)8x2-10x-3
\(a,=\left(x-2\right)\left(9x^2y^2-6x^3y^2\right)=3x^2y^2\left(3-2x\right)\left(x-2\right)\\ b,=5x\left(x^2-y^2\right)+20x\left(x+y\right)=5x\left(x-y\right)\left(x+y\right)+20x\left(x+y\right)\\ =5\left(x+y\right)\left(x^2-xy+4x\right)\\ c,=8x^2+2x-12x-3=2x\left(4x+1\right)-3\left(4x+1\right)=\left(2x-3\right)\left(4x+1\right)\)
Phân tích các đa thức sau thành nhân tử:
a) x3 – 2x2y + xy2
b) x2 + 12x + 20
c) (x2 + x + 1)(x2 + x + 4) + 2
a) \(=x\left(x^2-2xy+y^2\right)=x\left(x-y\right)^2\)
b) \(=\left(x^2+2x\right)+\left(10x+20\right)=x\left(x+2\right)+10\left(x+2\right)=\left(x+2\right)\left(x+10\right)\)
c) đặt \(x^2+x+1=t\)
\(\left(x^2+x+1\right)\left(x^2+x+4\right)+2=t\left(t+3\right)+2=t^2+3t+2=\left(t^2+t\right)+\left(2t+2\right)=t\left(t+1\right)+2\left(t+1\right)=\left(t+1\right)\left(t+2\right)=\left(x^2+x+2\right)\left(x^2+x+3\right)\)
Phân tích các đa thức sau thành nhân tử:
a)6x^2y
b)x^2(x-y)+4(y-x)
c)x^3+2x^2y+xy^2-4x
a: 6x-2y=2(3x-y)
b: =(x-y)(x-2)(x+2)
Lời giải:
a. Không phân tích được nữa
b. $x^2(x-y)+4(y-x)=x^2(x-y)-4(x-y)=(x-y)(x^2-4)=(x-y)(x-2)(x+2)$
c. $x^3+2x^2y+xy^2-4x=x(x^2+2xy+y^2-4)$
$=x[(x^2+2xy+y^2)-4]=x[(x+y)^2-2^2]=x(x+y-2)(x+y+2)$
ko phân tích dc
b: =(x-y)(x-2)(x+2)