Cho A= 7245-7244
và B= 7244-7243
So sánh A và B
so sánh các số sau số nào lớn hơn
?7245-7244 và 7244-7243so sánh các số sau số nào lớn hơn
?7245-7244 và 7244-7243
72^45-72^44=72^44(72-1)=72^44*71
72^44-72^43=72^43(72-1)=72^43*71
=>72^45-72^44>72^44-72^43
Bài 1: So sánh
1/ a) 85 và 3.47 b) 637 và 1612 c) 1714 và 3111
d) 339 và 1121 e) 7245 - 7244 và 7244 - 7243
1.
a) 8⁵ = (2³)⁵ = 2¹⁵ = 2.2¹⁴
3.4⁷ = 3.(2²)⁷ = 3.2¹⁴
Do 2 < 3 nên 2.2¹⁴ < 3.2¹⁴
Vậy 8⁵ < 3.4⁷
b) Do 63 < 64 nên
63⁷ < 64⁷ (1)
Ta có:
64⁷ = (2⁶)⁷ = 2⁴²
16¹² = (2⁴)¹² = 2⁴⁸
Do 42 < 48 nên 2⁴² < 2⁴⁸
64⁷ < 16¹² (2)
Từ (1) và (2) 63⁷ < 16¹²
c) Do 17 > 16 nên 17¹⁴ > 16¹⁴ (1)
Do 32 > 31 nên 32¹¹ > 31¹¹ (2)
Ta có:
16¹⁴ = (2⁴)¹⁴ = 2⁶⁴
32¹¹ = (2⁵)¹¹ = 2⁵⁵
Do 64 > 55 nên 2⁶⁴ > 2⁵⁵
16¹⁴ > 32¹¹ (3)
Từ (1), (2) và (3) 17¹⁴ > 31¹¹
d) Do 39 < 40 nên 3³⁹ < 3⁴⁰ (1)
Do 20 < 21 nên 11²⁰ < 11²¹ (2)
Ta có:
3⁴⁰ = (3²)²⁰ = 9²⁰
Do 9 < 11 nên 9²⁰ < 11²⁰ (3)
Từ (1), (2) và (3) 3³⁹ < 11²¹
e) Ta có:
72⁴⁵ - 72⁴⁴ = 72⁴⁴.(72 - 1) = 72⁴⁴.71
72⁴⁴ - 72⁴³ = 72⁴³.(72 - 1) = 72⁴³.71
Do 44 > 43 nên 72⁴⁴ > 72⁴³
72⁴⁴.71 > 72⁴³.71
Vậy 72⁴⁵ - 72⁴⁴ > 72⁴⁴ - 72⁴³
a) \(8^5=2^{15};3.4^7=3.2^{14}\) lớn hơn \(2^{15}\)
\(\Rightarrow8^5\) nhỏ hơn \(3.4^7\)
1.
a) 8⁵ = (2³)⁵ = 2¹⁵ = 2.2¹⁴
3.4⁷ = 3.(2²)⁷ = 3.2¹⁴
Do 2 < 3 nên 2.2¹⁴ < 3.2¹⁴
Vậy 8⁵ < 3.4⁷
b) Do 63 < 64 nên
63⁷ < 64⁷ (1)
Ta có:
64⁷ = (2⁶)⁷ = 2⁴²
16¹² = (2⁴)¹² = 2⁴⁸
Do 42 < 48 nên 2⁴² < 2⁴⁸
64⁷ < 16¹² (2)
Từ (1) và (2) 63⁷ < 16¹²
c) Do 17 > 16 nên 17¹⁴ > 16¹⁴ (1)
Do 32 > 31 nên 32¹¹ > 31¹¹ (2)
Ta có:
16¹⁴ = (2⁴)¹⁴ = 2⁶⁴
32¹¹ = (2⁵)¹¹ = 2⁵⁵
Do 64 > 55 nên 2⁶⁴ > 2⁵⁵
16¹⁴ > 32¹¹ (3)
Từ (1), (2) và (3) 17¹⁴ > 31¹¹
d) Do 39 < 40 nên 3³⁹ < 3⁴⁰ (1)
Do 20 < 21 nên 11²⁰ < 11²¹ (2)
Ta có:
3⁴⁰ = (3²)²⁰ = 9²⁰
Do 9 < 11 nên 9²⁰ < 11²⁰ (3)
Từ (1), (2) và (3) 3³⁹ < 11²¹
e) Ta có:
72⁴⁵ - 72⁴⁴ = 72⁴⁴.(72 - 1) = 72⁴⁴.71
72⁴⁴ - 72⁴³ = 72⁴³.(72 - 1) = 72⁴³.71
Do 44 > 43 nên 72⁴⁴ > 72⁴³
72⁴⁴.71 > 72⁴³.71
Vậy 72⁴⁵ - 72⁴⁴ > 72⁴⁴ - 72⁴³
So sánh
7245 – 7244 và 7244 – 7243
7245 – 7244 = 7244.(72 – 1) = 7244.71
7244 – 7243 = 7243.(72 – 1) = 7243.71
Mà 7243.71 < 7244.71 nên suy ra: 7244 – 7243 < 7245 – 7244
a) 76530 + 76529 và 76630
b) 6880 và 6780+6779 SO SÁNH NHA CÁC BẠN LÀM NHANH GIÚP MÌNH VỚI
c) 7245-7244 và 7244-7243
a) Ta có: 76530 + 76529 = 76529 . (765 + 1) = 76529 . 766
76630 = 76629 . 766
Nhận xét: 76629 > 76529
=> 76629 .
a) Ta có: 76530 + 76529 = 76529 . (765 + 1) = 76529 . 766
76630 = 76629 . 766
Nhận xét: 76629 > 76529
=> 76629 . 766 > > 76529 . 766
Hay 76530 + 76529 < 76630
b và c tương tự như phần a (ko phải mik ko muốn làm mà mình làm thế để bạn tự làm và tốt cho bản thân bạn, chúc bạn học tốt nha! =))
So sánh
a) 354 và 2200
b) 1512 và 13 . 1253
c) 7812 - 7811 và 7811 - 7810
d) 7245 - 7244 và 2744
e) 339 và 1111
Giúp với!
a) \(3^{54}\)
\(2^{200}=4^{100}>3^{54}\)
\(\Rightarrow3^{54}< 2^{200}\)
b) \(15^{12}=3^{12}.5^{12}\)
\(1^3.125^3=\left(5^3\right)^3=5^9< 3^{12}.5^{12}\)
\(\Rightarrow15^{12}>1^3.125^3\)
c) \(78^{12}-78^{11}=78^{11}.\left(7-1\right)=78^{11}.6\)
\(78^{11}-78^{10}=78^{10}.\left(7-6\right)=78^{10}.6< 78^{11}.6\)
\(\Rightarrow78^{12}-78^{11}>78^{11}-78^{10}\)
d) \(72^{45}-72^{44}=72^{44}.\left(72-1\right)=72^{44}.72>27^{44}\)
\(\Rightarrow72^{45}-72^{44}>27^{44}\)
e) \(3^{39}=\left(3^3\right)^{13}=27^{13}>11^{11}\)
\(\Rightarrow3^{39}>11^{11}\)
bạn có thể giải thích rõ ra đc không?
Không tính, xét xem các tổng (hiệu) sau có chia hết cho2, chia hết cho 5 không?
a) 168 + 240 b) 950 – 126 c) 7245 + 320 + 145
d) 322 – 132 e) 3.4.5.6.7 – 45 f) 1.2.3.4.5.6 +110
a, Cho a,b,n ϵ N* . Hãy so sánh \(\dfrac{a+n}{b+n}và\dfrac{a}{b}\)
b, Cho A= \(\dfrac{10^{11}-1}{10^{12}-1};B=\dfrac{10^{10}+1}{10^{11}+1}.\) So sánh A và B
Lời giải:
a) Xét hiệu \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{(a+n).b-a(b+n)}{b(b+n)}=\frac{n(b-a)}{b(b+n)}\)
Nếu $b>a$ thì $\frac{a+n}{b+n}-\frac{a}{b}>0\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$
Nếu $b<a$ thì $\frac{a+n}{b+n}-\frac{a}{b}<0\Rightarrow \frac{a+n}{b+n}<\frac{a}{b}$
Nếu $b=a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=0\Rightarrow \frac{a+n}{b+n}=\frac{a}{b}$
b) Rõ ràng $10^{11}-1< 10^{12}-1$.
Đặt $10^{11}-1=a; 10^{12}-1=b; 11=n$ thì: $a< b$; $A=\frac{a}{b}$ và $B=\frac{10^{11}+10}{10^{12}+10}=\frac{a+n}{b+n}$
Áp dụng kết quả phần a:
$b>a\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$ hay $B>A$
Cho a < b, hãy so sánh: 2a và 2b; 2a và a + b; -a + b; -a và -b.
+ a < b ⇒ 2a < 2b (nhân cả hai vế với 2 > 0, BĐT không đổi chiều).
+ a < b ⇒ a + a < b + a (Cộng cả hai vế với a)
hay 2a < a + b.
+ a < b ⇒ (-1).a > (-1).b (Nhân cả hai vế với -1 < 0, BĐT đổi chiều).
hay –a > -b.
Cho a,b,n thuộc Z; b,n>0.
a) Chứng minh: \(\dfrac{a}{b}>1\Leftrightarrow a>b\) và \(\dfrac{a}{b}< 1\Leftrightarrow a< b\)
b) So sánh 2 số hữu tỉ \(\dfrac{a}{b}\) và \(\dfrac{a+1}{b+1}\)
c) So sánh \(\dfrac{a}{b}\) và \(\dfrac{a+n}{a+n}\)
\(a,\dfrac{a}{b}>1\Leftrightarrow a>1\cdot b=b\\ \dfrac{a}{b}< 1\Leftrightarrow a< 1\cdot b=b\\ b,\dfrac{a}{b}=\dfrac{a\left(b+1\right)}{b\left(b+1\right)}=\dfrac{ab+a}{b^2+b}\\ \dfrac{a+1}{b+1}=\dfrac{b\left(a+1\right)}{b\left(b+1\right)}=\dfrac{ab+b}{b^2+b}\\ \forall a=b\Leftrightarrow\dfrac{a}{b}=\dfrac{a+1}{b+1}\\ \forall a>b\Leftrightarrow\dfrac{a}{b}>\dfrac{a+1}{b+1}\\ \forall a< b\Leftrightarrow\dfrac{a}{b}< \dfrac{a+1}{b+1}\)
\(c,\forall a>b\Leftrightarrow\dfrac{a}{b}-1=\dfrac{a-b}{b}>\dfrac{a-b}{b+n}\left(b< b+n;a-b>0\right)=\dfrac{a+n}{b+n}-1\\ \Leftrightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\\ \forall a< b\Leftrightarrow1-\dfrac{a}{b}=\dfrac{b-a}{b}>\dfrac{b-a}{b+n}\left(b< b+n;b-a>0\right)=1-\dfrac{a+n}{b+n}\\ \Leftrightarrow1-\dfrac{a}{b}>1-\dfrac{a+n}{b+n}\Leftrightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\\ \forall a=b\Leftrightarrow\dfrac{a+n}{b+n}=\dfrac{a}{b}\left(=1\right)\)
Cho a > b, hãy so sánh
a) a + b và 2b; b) 1- a và 1 - b.