Hãy so sánh:
a, 5 3 và 3 5
b, 2 8 và 3 5
c, 4 3 và 8 2
d, 25 45 và 125 30
Đề ôn tập HK 2 - Đề 8
Bài 1:
a) Biết -3a - 1 > -3b - 1. So sánh a và b?
b) Biết 4a + 3 < 4b + 3. So sánh a và b?
Bài 2: Biết a < b, hãy so sánh:
a) 3a - 7 và 3b - 7. b) 5 - 2a và 3 - 2b
c) 2a + 3 và 2b + 3. d) 3a - 4 và 3b - 3
Bài 3: a) Chứng minh pt: x² + 6x + 11 = 0 vô nghiệm
b) Chứng minh bất pt: 5x² + 16 ≥ 0 có vô số nghiệm.
1.
a. -3a - 1 + 1 > -3b - 1 + 1 (cộng cả 2 vế cho 1)
-3a . \(\left(\dfrac{-1}{3}\right)\) < -3b . \(\left(\dfrac{-1}{3}\right)\) (nhân cả vế cho \(\dfrac{-1}{3}\) )
a < b
b. 4a + 3 + (- 3) < 4b + 3 +(- 3) (cộng cả 2 vế cho -3)
4a . \(\dfrac{1}{4}\) < 4b . \(\dfrac{1}{4}\) (nhân cả 2 vế cho \(\dfrac{1}{4}\) )
a < b
2.
a. Ta có: a < b
3a < 3b ( nhân cả 2 vế cho 3)
3a - 7 < 3b - 7 (cộng cả 2 vế cho - 7 )
b. Ta có: a < b
-2a > -2b (nhân cả 2 vế cho -2)
5 - 2a > 5 - 2b ( cộng cẩ 2 vế cho 5)
c. Ta có: a < b
2a < 2b (nhân cả vế cho 2)
2a + 3 < 2b + 3 (cộng cả 2 vế cho 3)
d. Ta có: a < b
3a < 3b (nhân cả 2 vế cho 3)
3a - 4 < 3b - 4 (cộng cả 2 vế cho -4)
Ta có: 3 < 4
đến đây ko bắt cầu qua đc chắc đề bài sai
Không sử dụng máy tính cầm tay, hãy so sánh:
a) \({5^{6\sqrt 3 }}\) và \({5^{3\sqrt 6 }};\)
b) \({\left( {\frac{1}{2}} \right)^{ - \frac{4}{3}}}\) và \(\sqrt 2 {.2^{\frac{2}{3}}}.\)
a: \(6\sqrt{3}=\sqrt{108}>\sqrt{54}=3\sqrt{6}\)
\(\Rightarrow5^{6\sqrt{3}}>5^{3\sqrt{6}}\)
b: \(\sqrt{2}\cdot2^{\dfrac{2}{3}}=2^{\dfrac{1}{2}}\cdot2^{\dfrac{2}{3}}=2^{\dfrac{1}{2}+\dfrac{2}{3}}=2^{\dfrac{7}{6}}\)
\(\left(\dfrac{1}{2}\right)^{-\dfrac{4}{3}}=2^{\left(-1\right)\cdot\left(-\dfrac{4}{3}\right)}=2^{\dfrac{4}{3}}\)
mà \(\dfrac{7}{6}< \dfrac{8}{6}=\dfrac{4}{3}\).
nên \(\sqrt{2}\cdot2^{\dfrac{2}{3}}< \left(\dfrac{1}{2}\right)^{-\dfrac{4}{3}}\).
BÀI 1 SO SÁNH:A,11/12 VÀ 23/24 B,3/-20 VÀ -7/12 BÀI 2:2/5-3/4+/12 7/-8-5/12+1/6
Bài 1
a: 11/12=1-1/12
23/24=1-1/24
mà -1/12>-1/24
nên 11/12>23/24
b: -3/20=-9/60
-7/12=-35/60
mà -9>-35
nên -3/20>-7/12
Không thực hiện phép tính, hãy so sánh:
a) \(\left( { + 4} \right).\left( { - 8} \right)\) với 0
b) \(\left( { - 3} \right).4\) với 4
c) \(\left( { - 5} \right).\left( { - 8} \right)\) với \(\left( { + 5} \right).\left( { + 8} \right)\)
a) \(\left( { + 4} \right).\left( { - 8} \right)\) là tích của hai số nguyên khác dấu nên mang dấu âm. Vậy \(\left( { + 4} \right).\left( { - 8} \right) < 0\)
b) \(\left( { - 3} \right).4\) là tích của hai số nguyên khác dấu nên mang dấu âm. Vậy\(\left( { - 3} \right).4 < 4\)
c) \(\left( { - 5} \right).\left( { - 8} \right)\) là tích của hai số nguyên âm nên \(\left( { - 5} \right).\left( { - 8} \right) = 5.8\)
\(\left( { + 5} \right).\left( { + 8} \right)\) là tích của hai số nguyên dương nên \(\left( { + 5} \right).\left( { + 8} \right) = 5.8\)
Vậy \(\left( { - 5} \right).\left( { - 8} \right) = \left( { + 5} \right).\left( { + 8} \right)\).
không quy đồng mẫu số hay tử số hãy so sánh:
a)\(\dfrac{4}{9}\);\(\dfrac{1}{2}\) c)\(\dfrac{-5}{8}\);\(\dfrac{17}{-18}\)
b)\(\dfrac{5}{8}\);\(\dfrac{7}{12}\) d)\(\dfrac{8}{-15}\);\(\dfrac{-2}{3}\)
helppp me!!!
a) \(\dfrac{4}{9}< \dfrac{4}{8}=\dfrac{1}{2}\)
b) \(\dfrac{5}{8}=\dfrac{15}{24}>\dfrac{14}{24}=\dfrac{7}{12}\)
a: \(\dfrac{4}{9}< \dfrac{1}{2}\)
b: \(\dfrac{5}{8}>\dfrac{7}{12}\)
c: \(-\dfrac{5}{8}>-\dfrac{17}{18}\)
d: \(-\dfrac{8}{15}>-\dfrac{2}{3}\)
So sánh:
a) (1/80) mũ 7 & (1/243) mũ 6
b) (3/8) mũ 5 & (5/243) mũ 3
a) Ta có: \(\left(\dfrac{1}{243}\right)^6=\left(\dfrac{1}{3}\right)^{5\cdot6}=\left(\dfrac{1}{3}\right)^{30}\)
\(\Leftrightarrow\left(\dfrac{1}{3}\right)^{28}>\left(\dfrac{1}{243}\right)^6\)
\(\Leftrightarrow\left(\dfrac{1}{3^4}\right)^7>\left(\dfrac{1}{243}\right)^6\)
\(\Leftrightarrow\left(\dfrac{1}{81}\right)^7>\left(\dfrac{1}{243}\right)^6\)
mà \(\left(\dfrac{1}{80}\right)^7>\left(\dfrac{1}{81}\right)^7\)
nên \(\left(\dfrac{1}{80}\right)^7>\left(\dfrac{1}{243}\right)^6\)
\(\left(\dfrac{3}{8}\right)^5\&\left(\dfrac{5}{243}\right)^3\)
\(\left(\dfrac{3}{8}\right)^5=\left(\dfrac{90}{240}\right)^5=\dfrac{90^5}{240^5}\)
\(\left(\dfrac{5}{243}\right)^3=\dfrac{5^3}{243^3}\)
\(=>\dfrac{90^5}{240^5}>\dfrac{5^3}{243^3}\)
\(=>\left(\dfrac{3}{8}\right)^5>\left(\dfrac{5}{243}\right)^3\)
\(\left(\dfrac{1}{80}\right)^7\&\left(\dfrac{1}{243}\right)^6\)
\(\dfrac{1}{80}>\dfrac{1}{81}=\dfrac{1}{3^4}\)
\(=>\left(\dfrac{1}{80}\right)^7>\left(\dfrac{1}{3^4}\right)^7=\dfrac{1}{3^{7.4}}=\dfrac{1}{3^{28}}>\dfrac{1}{3^{30}}\)
\(=\dfrac{1}{\left(3^5\right)^6}=\left(\dfrac{1}{243}\right)^6\)
\(=>\left(\dfrac{1}{80}\right)^7>\left(\dfrac{1}{243}\right)^6\)
So sánh:
a, 5+\(\sqrt{ }\)2 và 4+ \(\sqrt{ }\)3
b, \(\)\(\sqrt{ }\)8 - \(\sqrt{ }\)2 và \(\sqrt{ }\)5 - \(\sqrt{ }\)3
c, \(\sqrt{ }\)5 - \(\sqrt{ }\)3 và \(\sqrt{ }\)10 - \(\sqrt{ }\)7
c.
(\sqrt{5}-\sqrt{3})-(\sqrt{10}-\sqrt{7})=(\sqrt{5}+\sqrt{7})-(\sqrt{3}+\sqrt{10})
Mà:
\((\sqrt{5}+\sqrt{7})^2=12+\sqrt{35}< 12+\sqrt{36}=18\)
\((\sqrt{3}+\sqrt{10})^2=13+\sqrt{30}>13+\sqrt{25}=18\)
\(\Rightarrow \sqrt{3}+\sqrt{10}> \sqrt{5}+\sqrt{7}\Rightarrow \sqrt{5}-\sqrt{3}< \sqrt{10}-\sqrt{7}\)
Lời giải:
a.
$5+\sqrt{2}>5+\sqrt{1}=6$
$4+\sqrt{3}< 4+\sqrt{4}=6$
$\Rightarrow 5+\sqrt{2}>4+\sqrt{3}$
b.
$\sqrt{8}-\sqrt{2}=2\sqrt{2}-\sqrt{2}=\sqrt{2}$
$\sqrt{5}-\sqrt{3}=\frac{5-3}{\sqrt{5}+\sqrt{3}}=\frac{2}{\sqrt{5}+\sqrt{3}}< \frac{2}{\sqrt{2}}=\sqrt{2}$
Vậy $\sqrt{8}-\sqrt{2}>\sqrt{5}-\sqrt{2}$
So sánh:
a) \(\dfrac{-9}{4}\) và \(\dfrac{1}{3}\).
b) \(\dfrac{-8}{3}\) và \(\dfrac{4}{-7}\).
c) \(\dfrac{9}{-5}\) và \(\dfrac{7}{-10}\).
em trả lời ccaua này hi vọng thầy còn nhớ em
a) -9/4<`1/3
a) \(\dfrac{-9}{4}< 0\)
\(0< \dfrac{1}{3}\)
Do đó: \(\dfrac{-9}{4}< \dfrac{1}{3}\)
So sánh:
A=3^2021-2/3^2024+5 và B=3^2020-2/3^2019+5
Làm chi tiết nha mn
So sánh:
a)\(2,4\) và \(2\frac{3}{5}\);
b) \( - 0,12\) và \( - \frac{2}{5}\)
c)\(\frac{{ - 2}}{7}\) và \( - 0,3\).
a)\(2,4 =\frac{24}{10}=\frac{{12}}{5}\) và \(2\frac{3}{5} = \frac{{13}}{5}\)
Ta có: \(\frac{{12}}{5} < \frac{{13}}{5} \Rightarrow 2,4 < 2\frac{3}{5}\).
b) \( - 0,12 = -\frac{12}{100}= - \frac{3}{{25}}\) và \( - \frac{2}{5} = - \frac{{10}}{{25}}\)
Ta có: -3 > -10 nên \( - \frac{3}{{25}} > - \frac{{10}}{{25}}\) nên \( - 0,12 > - \frac{2}{5}\).
c)\(\frac{{ - 2}}{7} = \frac{{ - 20}}{{70}}\) và \( - 0,3 = \frac{{ - 3}}{{10}} = \frac{{ - 21}}{{70}}\).
Do -20 > -21 nên \(\frac{{ - 20}}{{70}} > \frac{{ - 21}}{{70}}\) nên \(\frac{{ - 2}}{7} > - 0,3.\)