Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Adorable Angel
Xem chi tiết
Nguyễn Hà Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 10 2023 lúc 9:09

loading...  

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 9 2017 lúc 14:10

Giải bài 4 trang 7 sgk Hình học 10 | Để học tốt Toán 10

a) Các vectơ khác vectơ O và cùng phương với vectơ OA là:

Giải bài 4 trang 7 sgk Hình học 10 | Để học tốt Toán 10

b) Các vectơ bằng vectơ AB là:

Giải bài 4 trang 7 sgk Hình học 10 | Để học tốt Toán 10

Ya Ya
Xem chi tiết
Minh Hiếu
17 tháng 12 2023 lúc 23:09

Câu 4:

Áp dụng định lý Pytago

\(BC^2=AB^2+AC^2\Rightarrow BC=2\)

Ta có:

\(\overrightarrow{CA}.\overrightarrow{BC}=-\overrightarrow{CA}.\overrightarrow{CB}=-\dfrac{CA^2+CB^2-AB^2}{2}=-\dfrac{2+4-2}{2}=-2\)

Câu 5:

Gọi M là trung điểm BC

\(\overrightarrow{AM}=\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)

Mà: \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}=\dfrac{1}{3}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)

Câu 6:

\(\left|\overrightarrow{a}-\overrightarrow{b}\right|=3\)

\(a^2+b^2-2\overrightarrow{a}.\overrightarrow{b}=9\)

\(\overrightarrow{a}.\overrightarrow{b}=\dfrac{1^2+2^2-9}{2}=-2\)

Câu 7: 

\(\left|\overrightarrow{AB}-\overrightarrow{AD}+\overrightarrow{CD}\right|=\left|\overrightarrow{DB}+\overrightarrow{CD}\right|\)

                              \(=\left|\overrightarrow{DB}-\overrightarrow{DC}\right|=\left|\overrightarrow{CB}\right|=BC=a\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 6 2019 lúc 14:40

Đáp án A

Manh Duy
Xem chi tiết
10A2- Huỳnh Hồ Ngọc Như
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 15:41

\(\overrightarrow {AB}  = \overrightarrow a \;\;\, \Rightarrow \left\{ \begin{array}{l}AB//\;a\\AB = a\end{array} \right.\) và \(\overrightarrow {A'B'}  = \overrightarrow a \;\;\, \Rightarrow \left\{ \begin{array}{l}A'B'\;//\;a\\A'B' = a\end{array} \right.\)

\( \Rightarrow \left\{ \begin{array}{l}AB//\;A'B'\\AB = A'B'\end{array} \right.\)

Tương tự, ta cũng suy ra \(\left\{ \begin{array}{l}BC//\;B'C'\\BC = B'C'\end{array} \right.\)

\( \Rightarrow \Delta ABC = \Delta A'B'C'\)(c-g-c)

\(\left\{ \begin{array}{l}AC//\;A'C'\\AC = A'C'\end{array} \right.\)

Dễ dàng suy ra  \(\overrightarrow {AC}  = \overrightarrow {A'C'} \).

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 12 2018 lúc 2:21

Đáp án A

Nguuễn Ngọc Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 12 2023 lúc 9:26

a: ABCD là hình vuông

=>AC là phân giác của góc BAD và \(AC^2=AB^2+BC^2\)

AC là phân giác của góc BAD

=>\(\widehat{BAC}=\widehat{DAC}=\dfrac{1}{2}\cdot90^0=45^0\)

\(AC^2=AB^2+BC^2\)

=>\(AC^2=a^2+a^2=2a^2\)
=>\(AC=a\sqrt{2}\)

\(\overrightarrow{AB}\cdot\overrightarrow{AC}=AB\cdot AC\cdot cos\left(\overrightarrow{AB};\overrightarrow{AC}\right)\)

\(=a\cdot a\sqrt{2}\cdot cosBAC\)

\(=a^2\cdot\sqrt{2}\cdot\dfrac{\sqrt{2}}{2}=a^2\)

b: Vì ABCD là hình vuông

nên AC\(\perp\)BD

=>\(\overrightarrow{AC}\cdot\overrightarrow{BD}=0\)