Chứng minh phương trình sau luôn luôn có nghiệm: f ( x ) = ( m 2 - 2 m + 2 ) x 3 + 3 x - 3
cho phương trình: x2_(m+1)x-2(m+3)=0
a)tìm m để phương trình có nghiệm là x=2
b)chứng minh phương trình luôn có 2 nghiệm mọi m
b, \(\Delta=\left(m+1\right)^2+8\left(m+3\right)=m^2+2m+1+8m+24\)
\(=m^2+10m+25=\left(m+5\right)^2\ge0\forall m\)
Vậy pt luôn có 2 nghiệm
a) Thay x = 2 vào phương trình ta có
\(2^2-\left(m+1\right)2-2\left(m+3\right)=0\Leftrightarrow m=2\)
Vậy để phương trình có nghiệm là x = 2 thì m = 2
Chứng minh rằng phương trình sau luôn có nghiệm với mọi m:(-X^2+3X-2)m+3X-5=0
\(pt:\left(-x^2+3x-2\right)m+3x-5=0\)
\(\Leftrightarrow-x^2m+3mx-2m+3x-5=0\)
\(\Leftrightarrow-x^2m+\left(3m+3\right)x-2m-5=0\)
pt co nghiem \(\Leftrightarrow\Delta=\left(3m+3\right)^2-4m\left(2m+5\right)\ge0\)
\(\Leftrightarrow9m^2+18m+9-8m^2-20m\ge0\)
\(\Leftrightarrow\left(m-1\right)^2+8>0\left(ld\right)\)
Vay pt luon co nghiem voi moi m
cho phương trình X^2 +2mx -6m-9 =0
giải phương trình khi m = 1
tìm m để phương trình có nghiệm x = 2
Chứng minh rằng phương trình luôn có nghiệm em có hai nghiệm với mọi m
Tìm m để phương trình luôn có 2 nghiệm trái dấu
Tìm m để phương trình luôn có 2 nghiệm dương phân biệt
Tìm m để phương trình luôn có 2 nghiệm phân biệt
a) Thay m=1 vào phương trình ta được:
x2+2.1.x-6.1-9=0
<=> x2+2x-6-9=0
<=> x2+2x-15=0
<=> x2+5x-3x-15=0
<=> x(x+5)-3(x+5)=0
<=> (x-3)(x+5)=0
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}}\)
b) Thay x=2 vào phương trình ta được:
22+2.2.m-6m-9=0
<=> 4+4m-6m-9=0
<=> -2x-5=0
<=> -2x=5
<=> \(x=\frac{-5}{2}\)
Cho phương trình: x\(^2\) + 2(m+2)x - (4m+12) = 0
a)Chứng minh rằng phương trình luôn có nghiệm với mọi m
b)Xác định m để phương trình có 2 nghiệm x\(_1\), x\(_2\) thoả mãn x\(_1\)=x\(_2\)\(^2\)
a,Có \(\Delta=4\left(m+2\right)^2-4.-\left(4m+12\right)=4m^2+32m+64=4\left(m+4\right)^2\ge0\forall m\)
=> Phương trình luôn có nghiệm với mọi m
b,Phương trình có nghiệm \(\left[{}\begin{matrix}x=\dfrac{-2\left(m+2\right)+2\left(m+4\right)}{2}=2\\x=\dfrac{-2\left(m+2\right)-2\left(m+4\right)}{2}=-2m-6\end{matrix}\right.\) (ở đây không cần chia trường hợp của m bởi khi chia trường hợp thì x chỉ đổi giá trị cho nhau)
TH1: \(x_1=x_2^2\Leftrightarrow4=\left(-2m-6\right)^2\)\(\Leftrightarrow\left[{}\begin{matrix}m=-2\\m=-4\end{matrix}\right.\) (Thay vào pt thấy không thỏa mãn)
TH2:\(x_1=x_2^2\Leftrightarrow-2m-6=2^2\)\(\Leftrightarrow m=-5\) (Thay vào pt thấy thỏa mãn)
Vậy ...
Cho phương trình: x2 - 2(m - 2)x + 2m - 5 = 0 . Chứng minh phương trình luôn có nghiệm với mọi m.
Δ=(2m-4)^2-4(2m-5)
=4m^2-16m+16-8m+20
=4m^2-24m+36
=4m^2-2*2m*6+36=(2m-6)^2>=0
=>Phương trình luôn có nghiệm
Cho phương trình ẩn x: x² - ( m + 1 ) x + 2m - 2 = 0 a) Chứng minh phương trình luôn có nghiệm với mọi m.
\(\Delta=\left(m+1\right)^2-4\left(2m-2\right)=m^2-6m+9=\left(m-3\right)^2\ge0\) ; \(\forall m\)
\(\Rightarrow\) Phương trình luôn có nghiệm với mọi m
Chứng minh phương trình sau luôn có nghiệm với mọi m :
\(\left(5-3m\right)x^7+m^2x^4-2=0\)
Đặt \(f\left(x\right)=\left(5-3m\right)x^7+m^2x^4-2\Rightarrow f\left(x\right)\) liên tục trên R
\(f\left(0\right)=-2< 0\)
\(f\left(1\right)=m^2-3m+3=\left(m-\dfrac{3}{2}\right)^2+\dfrac{3}{4}>0\) ;\(\forall m\)
\(\Rightarrow f\left(0\right).f\left(1\right)< 0\) ;\(\forall m\)
\(\Rightarrow f\left(x\right)=0\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;1\right)\) (đpcm)
chứng minh phương trình bậc hai một ẩn sau luôn có 2 nghiệm phân biệt vs mọi m
x2-(m+1)x+m=0
\(x^2-\left(m+1\right)+m=0\left(1\right)\)
Ta có \(\Delta=b^2-4ac=[-\left(m+1\right)]^2-4m\)
\(=m^2+2m+1-4m=m^2-2m+1\)
\(=\left(m-1\right)^2\ge0\)
Để phương trình 1 luôn có 2 nghiệm phân biệt \(\Delta>0\Rightarrow m-1\ne0\Rightarrow m\ne1\)
Vậy \(m\ne1\) thì phương trình 1 luôn có 2 nghiệm phân biệt.
Ta có: \(\Delta=\left(-m-1\right)^2-4\cdot1\cdot m\)
\(=m^2+2m+1-4m\)
\(=m^2-2m+1\)
\(=\left(m-1\right)^2\)
Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)
\(\Leftrightarrow m-1\ne0\)
hay \(m\ne1\)
cho phương trình x^2-2(m+1)x+2m-15=0 chứng minh phương trình luôn có 2 nghiệm phân biệt
Δ = b2 - 4ac = [ -2( m + 1 ) ]2 - 4( 2m - 15 )
= 4( m + 1 )2 - 8m + 60
= 4( m2 + 2m + 1 ) - 8m + 60
= 4m2 + 8m + 4 - 8m + 60
= 4m2 + 64 ≥ 64 > 0 ∀ m
hay pt luôn có hai nghiệm phân biệt ( đpcm )