Tính x + 1 3 x - 1 3 ( 9 - 18 x ) ta được kết quả ?
A. - 18 x 3 + 9 x 2 + 2 x - 1
B. 18 x 3 + 9 x 2 + 2 x - 1
C. - 18 x 3 + 9 x 2 + 2 x - 7
D. - 18 x 3 + 3 x 2 - 2 x - 1
A=x^2-x-2/x^2-1+1/x-1-1/x+1
a,Rút gọn A
b,Tính x biết A=3/4
c,Tính giá trị A khi [x-3]=2
\(a,A=\dfrac{x^2-x-2}{x^2-1}+\dfrac{1}{x-1}-\dfrac{1}{x+1}\)
\(\Rightarrow A=\dfrac{x^2-x-2}{\left(x-1\right)\left(x+1\right)}+\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}-\dfrac{x-1}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow A=\dfrac{x^2-x-2x+x+1-x+1}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow A=\dfrac{x^2-3x+2}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow A=\dfrac{x^2-2x-x+2}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow A=\dfrac{x\left(x-2\right)-\left(x-2\right)}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow A=\dfrac{\left(x-1\right)\left(x-2\right)}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow A=\dfrac{x-2}{x+1}\)
\(b,A=\dfrac{3}{4}\\ \Rightarrow\dfrac{x-2}{x+1}=\dfrac{3}{4}\\ \Rightarrow4\left(x-2\right)=3\left(x+1\right)\\ \Rightarrow4x-8=3x+3\\ \Rightarrow4x-8-3x-3=0\\ \Rightarrow x-11=0\\ \Rightarrow x=11\)
\(c,\left|x-3\right|=2\Rightarrow\left[{}\begin{matrix}x-3=2\\x-3=-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)
Thay x=5 vào A ta có:
\(A=\dfrac{x-2}{x+1}=\dfrac{5-2}{5+1}=\dfrac{3}{6}=\dfrac{1}{2}\)
Thay x=1 vào A ta có:
\(A=\dfrac{x-2}{x+1}=\dfrac{1-2}{1+1}=\dfrac{-1}{2}\)
tính đạo hàm
a) \(y=\sqrt{\left(x+2\right)\left(x+3\right)}\)
b) \(y=\sqrt{\dfrac{2x+1}{x-3}}\)
c) \(y=\left(x+1\right)\sqrt{x+3}\) tính y'(1)
d) \(y=\dfrac{x-1}{x^2+1}\)
a: ĐKXĐ: \(\left(x+2\right)\left(x+3\right)>=0\)
=>\(\left[{}\begin{matrix}x>=-2\\x< =-3\end{matrix}\right.\)
\(y=\sqrt{\left(x+2\right)\left(x+3\right)}=\sqrt{x^2+5x+6}\)
=>\(y'=\dfrac{\left(x^2+5x+6\right)'}{2\sqrt{x^2+5x+6}}=\dfrac{2x+5}{2\sqrt{x^2+5x+6}}\)
y'>0
=>\(\dfrac{2x+5}{2\sqrt{x^2+5x+6}}>0\)
=>2x+5>0
=>\(x>-\dfrac{5}{2}\)
Kết hợp ĐKXĐ, ta được: x>=-2
Đặt y'<0
=>2x+5<0
=>2x<-5
=>\(x< -\dfrac{5}{2}\)
Kết hợp ĐKXĐ, ta được: x<=-3
Vậy: Hàm số đồng biến trên \([-2;+\infty)\) và nghịch biến trên \((-\infty;-3]\)
b: ĐKXĐ: \(\dfrac{2x+1}{x-3}>=0\)
=>\(\left[{}\begin{matrix}x>3\\x< =-\dfrac{1}{2}\end{matrix}\right.\)
\(y=\sqrt{\dfrac{2x+1}{x-3}}\)
=>\(y'=\dfrac{\left(\dfrac{2x+1}{x-3}\right)'}{2\sqrt{\dfrac{2x+1}{x-3}}}\)
=>\(y'=\dfrac{\dfrac{\left(2x+1\right)'\left(x-3\right)-\left(2x+1\right)\left(x-3\right)'}{\left(x-3\right)^2}}{2\sqrt{\dfrac{2x+1}{x-3}}}\)
=>\(y'=\dfrac{\dfrac{2\left(x-3\right)-2x-1}{\left(x-3\right)^2}}{2\sqrt{\dfrac{2x+1}{x-3}}}\)
\(=-\dfrac{\dfrac{7}{\left(x-3\right)^2}}{2\sqrt{\dfrac{2x+1}{x-3}}}< 0\forall x\) thỏa mãn ĐKXĐ, trừ x=-1/2 ra
=>Hàm số luôn đồng biến trên \(\left(3;+\infty\right);\left(-\infty;-\dfrac{1}{2}\right)\)
c:
ĐKXĐ: x>=-3
\(y=\left(x+1\right)\sqrt{x+3}\)
=>\(y'=\left(x+1\right)'\cdot\sqrt{x+3}+\left(x+1\right)\cdot\sqrt{x+3}'\)
=>\(y'=\sqrt{x+3}+\left(x+1\right)\cdot\dfrac{\left(x+3\right)'}{2\sqrt{x+3}}\)
=>\(y'=\sqrt{x+3}+\dfrac{x+1}{2\sqrt{x+3}}\)
=>\(y'=\dfrac{2x+6+x+1}{2\sqrt{x+3}}=\dfrac{3x+7}{2\sqrt{x+3}}\)
Đặt y'>0
=>3x+7>0
=>x>-7/3
Kết hợp ĐKXĐ, ta được: x>-7/3
Đặt y'<0
3x+7<0
=>x<-7/3
Kết hợp ĐKXĐ, ta được: \(-3< x< -\dfrac{7}{3}\)
Vậy: Hàm số đồng biến trên \(\left(-\dfrac{7}{3};+\infty\right)\) và nghịch biến trên \(\left(-3;-\dfrac{7}{3}\right)\)
d: \(y=\dfrac{x-1}{x^2+1}\)(ĐKXĐ: \(x\in R\))
=>\(y'=\dfrac{\left(x-1\right)'\left(x^2+1\right)-\left(x-1\right)\left(x^2+1\right)'}{\left(x^2+1\right)^2}\)
=>\(y'=\dfrac{x^2+1-2x\left(x-1\right)}{\left(x^2+1\right)^2}=\dfrac{-x^2+2x+1}{\left(x^2+1\right)^2}\)
Đặt y'>0
=>\(-x^2+2x+1>0\)
=>\(1-\sqrt{2}< x< 1+\sqrt{2}\)
Đặt y'<0
=>\(-x^2+2x-1< 0\)
=>\(\left[{}\begin{matrix}x>1+\sqrt{2}\\x< 1-\sqrt{2}\end{matrix}\right.\)
Vậy: hàm số đồng biến trên khoảng \(\left(1-\sqrt{2};1+\sqrt{2}\right)\)
hàm số nghịch biến trên khoảng \(\left(1+\sqrt{2};+\infty\right);\left(-\infty;1-\sqrt{2}\right)\)
Tính a)(x-3).(x+3)-(x-3)² b)(x²-1).(x+1)-(x-3).(x²+3x+9)
a: \(=x^2-9-x^2+6x-9=6x-18\)
b: \(=x^3+x^2-x-1-x^3+27\)
\(=x^2-x+26\)
1. Biết x+y=3 ; x.y=1. Tính x^2 =y^2;x^3 =y^3;x^4 =y^4
2. Biết x+y=4 ; x.y=2. Tính x^2 =y^2;x^3 =y^3;x^4 =y^4
Sửa đề: Các dấu bằng ở yêu cầu là dấu cộng.
1. Có: \(x+y=3\)
\(\Leftrightarrow\left(x+y\right)^2=3^2\)
\(\Leftrightarrow x^2+2xy+y^2=9\)
\(\Leftrightarrow x^2+y^2=9-2\cdot1=7\) (do \(xy=1\))
\(------\)
Lại có: \(x+y=3\)
\(\Leftrightarrow\left(x+y\right)^3=3^3\)
\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=27\)
\(\Leftrightarrow x^3+y^3+3\cdot1\cdot3=27\) (do x + y = 3; xy = 1)
\(\Leftrightarrow x^3+y^3=18\)
Ta có: \(x^2+y^2=7\)
\(\Leftrightarrow\left(x^2+y^2\right)^2=7^2\)
\(\Leftrightarrow x^4+y^4+2\cdot\left(xy\right)^2=49\)
\(\Leftrightarrow x^4+y^4=49-2\cdot1=47\) (do xy = 1)
a) tính nhanh
( 1 + \(\dfrac{1}{2}\) ) x ( 1 + \(\dfrac{1}{3}\) ) x ..... x ( 1 + \(\dfrac{1}{2005}\) )
b) tính bằng cách thuận tiện
\(\dfrac{2}{3}\) x \(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) x \(\dfrac{1}{2}\)
a)\(=\left(\dfrac{2}{2}+\dfrac{1}{2}\right)\times\left(\dfrac{3}{3}+\dfrac{1}{3}\right)\times...\times\left(\dfrac{2005}{2005}+\dfrac{1}{2005}\right)\)
\(=\dfrac{3}{2}\times\dfrac{4}{3}\times...\times\dfrac{2006}{2005}=\dfrac{2006}{2}=1003\)
b)\(=\left(\dfrac{2}{3}+\dfrac{1}{3}\right)\times\dfrac{1}{2}=\dfrac{3}{3}\times\dfrac{1}{2}=\dfrac{1}{2}\)
b)
\(\dfrac{1}{2}x\left(\dfrac{2}{3}+\dfrac{1}{3}\right)=\dfrac{1}{2}x1=\dfrac{1}{2}\)
Tính:
a) (x-1)^3-(x+1)^3+6.((x+1).(x-1)
b) (x-1)^3-(x-1).(x^2+x+1)-3.(1-x).x
a. Câu hỏi của Nguyễn Thị Anh Thư - Toán lớp 8 - Học toán với OnlineMath
a, \(\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\)
\(=\left(x-1-x-1\right)\left[\left(x-1\right)^2+\left(x-1\right)\left(x+1\right)+\left(x+1\right)^2\right]+6\left(x^2-1\right)\)
\(=-2\left[x^2-2x+1+x^2-1+x^2+2x+1\right]+6x^2-6\)
\(=-2\left(3x^2+1\right)+6x^2-6=-6x^2-2+6x^2-6=-8\)
b, \(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)
\(=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)+3x\left(x-1\right)\)
\(=\left(x-1\right)\left[\left(x-1\right)^2-\left(x^2+x+1\right)+3x\right]\)
\(=\left(x-1\right)\left(x^2-2x+1-x^2-x-1+3x\right)\)
\(=\left(x-1\right).0=0\)
Thực hiện phép tính: 1 ( x - 1 ) ( x - 2 ) + 2 ( x - 2 ) ( x - 3 ) - 3 ( x - 3 ) ( x - 1 )
1 .Cho x+y=a và xy=b , tính giá trị của biểu thức :
a. x^2+y^2
b. x^3+y^3
c. x^4+y^4
d. x^5+y^5
2 . a.Cho x+y=1 tính GTBT x^3+y^3+xy
b. cho x-y=1 tính GTBT x^3-y^3-xy
c. cho x+y=a , x^2+y^2=b tính x^3+y^3
(x+y)^2 =a^2
x^2 +2xy +y^2 =a^2
x^2+y^2 =a^2-2xy =a^2 -2b
x^3 +y^3 = (x+y)(x^2 -xy +y^2)
=a(a^2-2b-b)
=a(a^2-3b)
=a^3- 3ab
(x^2 +y^2)^2=(a^2-2b)^2 ( cái này tính cho x^4 + y^4)
tương tự như câu đầu tiên
x^5+ y^5 (cái đó mình không biết)
\(1.\)
\(a)\)
\(x^2+y^2\)
\(=\left(x+y\right)^2-2xy\)
\(=a^2-2b\)
\(b)\)
\(x^3+y^3\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=a[\left(x+y\right)^2-3xy]\)
\(=a\left(a^2-3b\right)\)
\(=a^3-3ab\)
\(c)\)
\(x^4+y^4\)
\(=\left(x^2+y^2\right)^2-2x^2y^2\)
\(=\left(a^2-2b\right)^2-2b^2\)
\(=a^4-4a^2b+2b^2\)
\(d)\)
\(x^5+y^5\)
\(=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)\)
\(=[\left(x+y\right)^2-2xy][\left(x+y\right)^3-3xy\left(x+y]\right)-ab^2\)
\(=\left(a^2-2b\right)\left(a^3-3ab\right)-ab^2\)
\(=a^5-3a^3b-2a^3b+6ab^2-ab^2\)
\(=a^5-5a^3b+5ab^2\)
cho 2 đa thức
A(x) = 1/3(x^3-6x^4+3x^2-1) + 2(x^2-x^5+x)
B(x) = x^6-4x^5+2x^2+x^3+2/3
a, tính a(x)+b(x), 2a(x)-b(x), 3a(x)-6b(x)
b, tính a(4), a(-1), b(2), a(-1)-2b(1)
Tính: A= (1 - 3/8) x(1 - 3/15) x (1 - 3/24) x ... x (1 - 3/143)