Giải các phương trình:
a) x + 1 3 x − 2 = 0 ; b) x 2 + 1 2 x − 5 = 0 ;
c) x 2 2 x − 3 − 9 2 x − 3 = 0 ; d) 2 x 2 − 3 x + 1 = 0 .
Giải các phương trình:
a) \(\sqrt[3]{x+1}=-5\)
b) \(\sqrt[3]{x+1}-1=x\)
a: Ta có: \(\sqrt[3]{x+1}=-5\)
\(\Leftrightarrow x+1=-125\)
hay x=-126
b: Ta có: \(\sqrt[3]{x+1}-1=x\)
\(\Leftrightarrow x+1=\left(x+1\right)^3\)
\(\Leftrightarrow\left(x+1\right)\left[\left(x+1\right)^2-1\right]=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=-2\end{matrix}\right.\)
giải các phương trình:
a)(x2+3x)(x2+3x+4)=-4
b)x(x+1)(x+2)(x+3)=24
Ta có (\(^{x^{2^{ }}^{ }+3x}\)) (\(^{x^{2^{ }}+3x+4}\))
Đặt \(x^{2^{ }^{ }}+3x\) là a ta có
a.(a+4)=-4
4a+\(a^2\) -4=0
\(^{ }\left(a-2\right)^2\)=0
Suy ra a=2
hay \(x^{2^{ }^{ }^{ }}+3x=2\)
\(x^2+3x-2=0\)
𝑥=−3±17√/2
giải các phương trình:
a)(x2+x+1)2-2x2-2x=5
b)\(\dfrac{1}{\left(x-1\right)\left(x-3\right)}\)+x2-4x+5=0
Giải các phương trình:
a) \(\left(x+2\right)^3-x+1=\left(x-1\right)\left(x+1\right)\)
b) \(\left(x+1\right)^3-x+1=\left(x-1\right)\left(x-2\right)\)
a) (x+2)3−x+1=(x−1)(x+1)
=>(x+2)(x2-2x+4)-x+1=(x2-12)
=>x3-2x2+4x+2x2-4x+8-x+1=(x2-1)
=>x3-2x2+4x+2x2-4x+8+1-x2+1=0
=>x3-x2+10=0
=>x3-x2=-10
=>x2(x-1)=-10
=>....
Giải phương trình:
a, x^2+3|x|-4=0
b,|x^2-4|=x^2-4
c,(x+1)^2-|3-2x|-|x-2|^2+6=0
d,x^2+4x+3+|2x+5|-(x+1)(x+3) - 5+2x=0
Giải bất phương trình:
a, 2|x-1| <x+1
b, |x-3| > x+1 phần 2
mình đang cần gấp ;-;
1:
a: =>(|x|+4)(|x|-1)=0
=>|x|-1=0
=>x=1; x=-1
b: =>x^2-4>=0
=>x>=2 hoặc x<=-2
d: =>|2x+5|=2x-5
=>x>=5/2 và (2x+5-2x+5)(2x+5+2x-5)=0
=>x=0(loại)
Giải các bất phương trình:
a,\(\frac{x+1}{X-1}\)>0
b,\(\frac{x^2+x-2}{x-9}\)<0
a.
\(\dfrac{x+1}{x-1}>0\Rightarrow\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\)
b.
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x+2\right)}{x-9}< 0\Rightarrow\left[{}\begin{matrix}x< -2\\1< x< 9\end{matrix}\right.\)
giải phương trình:
a) 2x/x-1 + 4/x^2+2x-3 = 2x-5/x+3
\(\dfrac{2x}{x-1}+\dfrac{4}{x^2+2x-3}=\dfrac{2x-5}{x+3}\)
\(\Leftrightarrow\dfrac{2x}{x-1}+\dfrac{4}{\left(x-1\right)\left(x+3\right)}=\dfrac{2x-5}{x+3}\)
\(ĐK:x\ne1;-3\)
\(\Leftrightarrow\dfrac{2x\left(x+3\right)+4}{\left(x-1\right)\left(x+3\right)}=\dfrac{\left(2x-5\right)\left(x-1\right)}{\left(x-1\right)\left(x+3\right)}\)
\(\Leftrightarrow2x\left(x+3\right)+4=\left(2x-5\right)\left(x-1\right)\)
\(\Leftrightarrow2x^2+6x+4=2x^2-2x-5x+5\)
\(\Leftrightarrow13x=1\)
\(\Leftrightarrow x=\dfrac{1}{13}\left(tm\right)\)
Giải bất phương trình:
a) -2x+5 ≥ 0
b) (x-1)(x+3) > 0
a, \(-2x\ge-5\Leftrightarrow x\le\dfrac{5}{2}\)
b, TH1 : \(\left\{{}\begin{matrix}x-1>0\\x+3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>1\\x>-3\end{matrix}\right.\Leftrightarrow x>1\)
TH2 : \(\left\{{}\begin{matrix}x-1< 0\\x+3< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 1\\x< -3\end{matrix}\right.\Leftrightarrow x< -3\)
Giải các phương trình:
a) |x + 5| = 3x + 1;
b) |-5x| = 2x + 21.
bạn tự kl nhé
a, \(\left|x+5\right|=3x+1\)
TH1 : \(x+5=3x+1\Leftrightarrow-2x=-4\Leftrightarrow x=2\)
TH2 : \(x+5=-3x-1\Leftrightarrow4x=-6\Leftrightarrow x=-\dfrac{3}{2}\)( ktm )
b, \(\left|-5x\right|=2x+21\)
TH1 : \(5x=2x+21\Leftrightarrow3x=21\Leftrightarrow x=7\)
TH2 : \(5x=-2x-21\Leftrightarrow7x=-21\Leftrightarrow x=-3\)
a) Ta có: |x+5|=3x+1
\(\Leftrightarrow\left[{}\begin{matrix}x+5=3x+1\left(x\ge-5\right)\\x+5=-3x-1\left(x< -5\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3x=1-5\\x+3x=-1-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-2x=-4\\4x=-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(nhận\right)\\x=-\dfrac{3}{2}\left(loại\right)\end{matrix}\right.\)
Vậy: S={2}
Giải phương trình:
a, \(\dfrac{t}{2a}-\dfrac{4a}{3}=1\)
b, \(\dfrac{x-2a}{b}=2+\dfrac{x+b}{a}\) (a, b là các hằng số)