Tìm một nghiệm của đa thức f(x) biết: f(x) = x2 – 5x + 4
Tìm một nghiệm của đa thức f(x) biết:
a. f(x) = x2 – 5x + 4
b. f(x) = 2x2 + 3x + 1
Ta có f(x)=0f(x)=0
⇔x2−5x+4=0⇔x2−5x+4=0
⇔x2−4x−x+4=0⇔x2−4x−x+4=0
⇔x(x−4)−(x−4)=0⇔x(x−4)−(x−4)=0
⇔(x−1)(x−4)=0⇔(x−1)(x−4)=0
⇔x=1⇔x=1 hoặc x=4x=4
Vậy: . . .
b) f(x) = 2x2x2 + 3x + 1
Ta có f(x)=0f(x)=0
⇔2x2+3x+1=0⇔2x2+3x+1=0
⇔2x2+2x+x+1=0⇔2x2+2x+x+1=0
⇔2x(x+1)+(x+1)=0⇔2x(x+1)+(x+1)=0
⇔(x+1)(2x+1)=0⇔(x+1)(2x+1)=0
⇔x=−1⇔x=−1 hoặc x=−12x=−12
Vậy: . . .
a, Để \(x\) là nghiệm của \(f\left(x\right)\)thì:
\(x^2-5x+4=0\)
\(\Leftrightarrow x^2-x-\left(4x+4\right)=0\)
\(\Leftrightarrow x\left(x-1\right)+4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-4\end{cases}}}\)
Vậy \(x=1,x=-4\)là hai nghiệm của \(f\left(x\right)\)
b, Để \(x\)là nghiệm của \(f\left(x\right)\)thì:
\(2x^2+3x+1=0\)
\(\Leftrightarrow2x^2+2x+x+1=0\)
\(\Leftrightarrow2x\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\2x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0-1\\2x=-1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-1\\x=\frac{-1}{2}\end{cases}}}\)
Vậy \(x=-1,x=\frac{-1}{2}\)là nghiệm của \(f\left(x\right)\)
b) Cho đa thức f(x) = x2 - 5x - 35. Chứng tỏ x = -5 là nghiệm của đa thức f(x) và
x = 5 không là nghiệm của đa thức f(x).
Cái nào cũng không phải là nghiệm hết ạ;-;
Tìm một nghiệm của đa thức f(x) biết:
A. f(x) = x2 – 5x + 4
b. f(x) = 2x2 + 3x + 1
Không chép mạng và giải dễ hiểu
a: Đặt f(x)=0
=>(x-1)(x-4)=0
=>x=1 hoặc x=4
b: 2x^2+3x+1=0
=>2x^2+2x+x+1=0
=>(x+1)(2x+1)=0
=>x=-1/2 hoặc x=-1
Tìm nghiệm của đa thức f(x) biết
a)f(x)=x^2-5x+4
b)f(x)=2x^2+3x+1
a/ Khi f (x) = 0
=> \(x^2-5x+4=0\)
=> \(x^2-x-4x+4=0\)
=> \(\left(x^2-x\right)-\left(4x-4\right)=0\)
=> \(x\left(x-1\right)-4\left(x-1\right)=0\)
=> \(\left(x-1\right)\left(x-4\right)=0\)
=> \(\orbr{\begin{cases}x-1=0\\x-4=0\end{cases}}\)=> \(\orbr{\begin{cases}x=1\\x=4\end{cases}}\)
Vậy f (x) có 2 nghiệm: x1 = 1; x2 = 4.
b/ Khi f (x) = 0
=> \(2x^2+3x+1=0\)
=> \(2x^2+2x+x+1=0\)
=> \(\left(2x^2+2x\right)+\left(x+1\right)=0\)
=> \(2x\left(x+1\right)+\left(x+1\right)=0\)
=> \(\left(x+1\right)\left(2x+1\right)=0\)
=> \(\orbr{\begin{cases}x+1=0\\2x+1=0\end{cases}}\)=> \(\orbr{\begin{cases}x=-1\\x=\frac{-1}{2}\end{cases}}\)
Vậy f (x) có 2 nghiệm: x1 = -1; x2 = \(\frac{-1}{2}\)
a) Cho F(x) =0
=> x^2 -5x +4 =0
x^2 -x - 4x +4 =0
x.( x-1) - 4.( x-1) =0
( x-1).( x-4) =0
=> x-1= 0 => x-4=0
x=1 x=4
KL: x=1;x=4 là nghiệm của đa thức F(x)
b) Cho F(x) =0
=> 2x^2 +3x +1 =0
2x^2 + 2x +( x+1) =0
2x.( x+1) +( x+1) =0
(x+1) .( 2x+1) =0
=> x+1 =0 => 2x+1 =0
x= -1 2x =-1
x = -1/2
KL: x= -1; x= -1/2 là nghiệm của đa thức F(x)
Chúc bn học tốt !!!!!!
1.Tìm nghiệm đa thức
1)6x3 - 2x2
2)|3x + 7| + |2x2 - 2|
2.Chứng minh đa thức ko có nghiệm
1)x2 + 2x + 4
2)3x2 - x + 5
3.Tìm các hệ số a, b, c, d của đa thức f(x) = ax3 + bx2+ cx + d
Biết f(0)=5; f(1)=4; f(2)=31; f(3)=88
Bài 1:
1.
$6x^3-2x^2=0$
$2x^2(3x-1)=0$
$\Rightarrow 2x^2=0$ hoặc $3x-1=0$
$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức
2.
$|3x+7|\geq 0$
$|2x^2-2|\geq 0$
Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$
$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý)
Vậy đa thức vô nghiệm.
Bài 2:
1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$
Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$
Do đó đa thức vô nghiệm
2.
$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$
$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$
Vậy đa thức khác 0 với mọi $x$
Do đó đa thức không có nghiệm.
Bài 3:
$f(0)=a.0^3+b.0^2+c.0+d=d=5$
$f(1)=a+b+c+d=4$
$a+b+c=4-d=-1(*)$
$f(2)=8a+4b+2c+d=31$
$8a+4b+2c=31-d=26$
$4a+2b+c=13(**)$
$f(3)=27a+9b+3c+d=88$
$27a+9b+3c=88-d=83(***)$
Từ $(*); (**); (***)$ suy ra $a=\frac{1}{3}; b=13; c=\frac{-43}{3}$
Vậy.......
Cho hai đa thức
f ( x ) = x 3 - 3 x 2 + 2 x - 5 + x 2 , g ( x ) = - x 3 - 5 x + 3 x 2 + 3 x + 4 .
c. Tính nghiệm của f(x) + g(x)
c. Ta có f(x) + g(x)
=(x3 - 2x2 + 2x - 5) + (-x3 + 3x2 - 2x + 4) = x2 - 1
Ta có x2 - 1 = 0 ⇒ x2 = 1 ⇒ x = 1,x = -1
Vậy nghiệm của đa thức h(x) là x = ±1 (1 điểm)
Tìm một nghiệm của đa thức f(x) biết : a,f(x)=x^2-5x+4 b,f(x)=2x^2+3x+1
a, Ta có :f(1)=1^2-5.1+4=0 Vậy x=1 là một nghiệm của đa thức f(x) b,Ta có :f(-1)=(-1)^2-5.(-1)+4=0 Vậy x=-1 là một nghiệm của đa thức f(x)
1. Tính giá trị của đa thức F(x) = 2x2 – 3x – 2 tại x = -1; x = 0 ; x = 1; x = 2. Từ đó hãy tìm một nghiệm của đa thức F(x)
2. Tìm nghiệm của đa thức E(x) = x2 + x.
1. F(-1) = 2.(-1)2 – 3. (-1) – 2 = 2.1 + 3 – 2 = 3
F(0) = 2. 02 – 3 . 0 – 2 = -2
F(1) = 2.12 – 3.1 – 2 = 2 – 3 – 2 = -3
F(2) = 2.22 – 3.2 – 2 = 8 – 6 – 2 = 0
Vì F(2) = 0 nên 0 là 1 nghiệm của đa thức F(x)
2. Vì đa thức E(x) có hệ số tự do bằng 0 nên có một nghiệm là x = 0.
Bài 14: Tìm nghiệm của các đa thức sau:
B(x)= -5x+30 E(x)=x2-81
C(x)=2x+1/3 F(x)=(x-1)2+9
D(x)=(x-3)(16-4x) G(x)=(x-4)(x2+1)
cho B(x) = 0
\(=>-5x+30=0\Rightarrow-5x=-30\Rightarrow x=6\)
cho E(x) = 0
\(=>x^2-81=0\Rightarrow x^2=81=>\left[{}\begin{matrix}x=9\\x=-9\end{matrix}\right.\)
cho C(x) = 0
\(=>2x+\dfrac{1}{3}=0=>2x=-\dfrac{1}{3}=>x=-\dfrac{1}{6}\)
Cho F(x) = 0
\(=>\left(x-1\right)^2+9=0=>\left(x-1\right)^2=-9\) ( vô lí )
vậy F(x) vô nghiệm
cho D(x) = 0
\(=>\left(x-3\right)\left(16-4x\right)=0\Leftrightarrow\left[{}\begin{matrix}x-3=0\\16-4x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
cho G(x) =0
\(=>\left(x-4\right)\left(x^2+1\right)=0\)
\(=>\left[{}\begin{matrix}x-4=0\\x^2+1=0\end{matrix}\right.=>\left[{}\begin{matrix}x=4\left(tm\right)\\x^2=-1\left(vl\right)\end{matrix}\right.\)
vậy G(x ) có nghiệm là 4
bạn tham khảo hai câu này nha vì mình ko biết là mấy câu còn lại
B(x)=-5x+30
cho B(x)=0
=> -5x+30=0
-5x=-30
x=-30:(-5)
x=-6
* Vậy nghiệm của đa thức B(x) là -6.
C(x)=2x+1/3
cho C(x)=0
=>2x+1/3=0
2x=-1/3
x=-1/3:2
x=-1/6
vậy nghiệm của đa thức C(x) là -1/6.