Giải các phương trình sau:
a) 2 x − 1 3 + 6 3 x − 1 2 = 2 x + 1 3 + 6 x + 2 3 ;
b) x − 2 2 + 3 − 2 x 2 − 4 x − 4 x − 5 = x + 3 2 ;
c) x − 3 + 2 x − 3 − 1 3 = 3 − x 4 ;
d) x + 4 3 − 1 7 = 2 − x 7 + x 3 + x + 1 .
1.Giải các phương trình sau:
a) 2x2 +16 -6 = 4\(\sqrt{x\left(x+8\right)}\)
b) x4 -8x2 + x-2\(\sqrt{x-1}\) + 16=0
2. Gọi x1;x2 là nghiệm phương trình x2 -3x -7 =0. Không giải phương trình tính các giá trị của biểu thức sau:
A = \(\dfrac{1}{x_1-1}+\dfrac{1}{x_2-1}\)
B= \(x^2_1+x_2^2\)
C= |x1 - x2|
D= \(x_1^4+x_2^4\)
E= (3x1 + x2) (3x2 + x1)
2:
\(A=\dfrac{x_2-1+x_1-1}{x_1x_2-\left(x_1+x_2\right)+1}\)
\(=\dfrac{3-2}{-7-3+1}=\dfrac{1}{-9}=\dfrac{-1}{9}\)
B=(x1+x2)^2-2x1x2
=3^2-2*(-7)
=9+14=23
C=căn (x1+x2)^2-4x1x2
=căn 3^2-4*(-7)=căn 9+28=căn 27
D=(x1^2+x2^2)^2-2(x1x2)^2
=23^2-2*(-7)^2
=23^2-2*49=431
D=9x1x2+3(x1^2+x2^2)+x1x2
=10x1x2+3*23
=69+10*(-7)=-1
giải các phương trình sau:
a) \(3x^2-17x+24=\sqrt{x-3}+3\sqrt{5-x}\)
b) \(\sqrt[3]{x+6}-2\sqrt{x-1}=4-x^2\)
Giải các phương trình sau:
a) 3x + 6 = x +10
b) x(x + 1) - 2 (x + 1) = 0
\(a,\\ \Leftrightarrow3x-x=10-6\\ \Leftrightarrow2x=4\\ \Leftrightarrow x=2\\ b,\\ \Leftrightarrow\left(x-2\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
\(a,\Leftrightarrow3x-x=10-6\\ \Leftrightarrow2x=4\\ \Leftrightarrow x=\dfrac{4}{2}=2\)
Vậy phương trình có tập nghiệm S = \(\left\{2\right\}\)
\(b,\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\\ \Leftrightarrow x+1=0\) hoặc \(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=-1\) \(\Leftrightarrow x=2\)
Vậy phương trình có tập nghiệm S = \(\left\{-1;2\right\}\)
a)3x + 6 = x +10
⟺3x-x=10-6
⟺2x=4 ⟺x=2
Vậy tập nghiệm của phương trình là S={2}
b) x(x + 1) - 2 (x + 1) = 0
⟺(x+1)(x-2)=0
⟺x+1=0 ⟺x=-1
x-2=0 ⟺x=2
Vậy tập nghiệm của phương trình là S={2;-1}
Bài 1: Giải các phương trình sau:
a) 3(2,2-0,3x)=2,6 + (0,1x-4)
b) 3,6 -0,5 (2x+1) = x - 0,25(22-4x)
Bài 2: Giải các phương phương trình sau:
a) \(\dfrac{3\left(x-3\right)}{4}\)+\(\dfrac{4x-10,5}{4}\)=\(\dfrac{3\left(x+1\right)}{5}\)+6
b) \(\dfrac{2\left(3x+1\right)+1}{4}\)-5=\(\dfrac{2\left(3x-1\right)}{5}\)-\(\dfrac{3x+2}{10}\)
Mik đang cần gấp nha!!❤
Bài 1: Giải các phương trình sau:
a) 3(2,2-0,3x)=2,6 + (0,1x-4)
<=> 6.6 - 0.9x = 2,6 + 0,1x - 4
<=> - 0.9x - 0,1x = -6.6 -1,4
<=> -x = -8
<=> x = 8
Vậy x = 8
b) 3,6 -0,5 (2x+1) = x - 0,25(22-4x)
<=> 3,6 - x - 0,5 = x - 5,5 + x
<=> - x - 3,1 = -5,5
<=> - x = -2.4
<=> x = 2.4
Vậy x = 2.4
Giải các phương trình sau:
a) \(\dfrac{3}{x-7}+\dfrac{2}{x+7}=\dfrac{5}{x^2-49}\)
b) \(\dfrac{2x-1}{3}-\dfrac{x+3}{2}>1+\dfrac{5x}{6}\)
a) \(\dfrac{3}{x-7}+\dfrac{2}{x+7}=\dfrac{5}{x^2-49}\)
(ĐKXĐ: x khác 7; x khác -7)
<=>\(\dfrac{3.\left(x+7\right)}{\left(x-7\right).\left(x+7\right)}+\dfrac{2.\left(x-7\right)}{\left(x+7\right).\left(x-7\right)}=\dfrac{5}{\left(x+7\right).\left(x-7\right)}\)
=> 3x + 21 + 2x - 14 = 5
<=> 3x + 2x = 5 + 14 - 21
<=> 5x = -2
<=> x = \(\dfrac{-2}{5}\)
Vậy S = { \(\dfrac{-2}{5}\) }
b) \(\dfrac{2x-1}{3}-\dfrac{x+3}{2}>1+\dfrac{5x}{6}\)
<=> \(\dfrac{2.\left(2x-1\right)}{3.2}-\dfrac{3.\left(x+3\right)}{3.2}>\dfrac{1.6}{6}+\dfrac{5x}{6}\)
=> 4x - 2 - 3x - 9 > 6 + 5x
<=> 4x - 3x - 5x > 6 + 9 + 2
<=> -4x > 17
<=> \(\dfrac{-17}{4}\)
Vậy S = { \(\dfrac{-17}{4}\) }
Giải các phương trình sau:
a) \(\sqrt {2 - x} + 2x = 3\)
b) \(\sqrt { - {x^2} + 7x - 6} + x = 4\)
a) \(\sqrt {2 - x} + 2x = 3\)\( \Leftrightarrow \sqrt {2 - x} = 3 - 2x\) (1)
Ta có: \(3 - 2x \ge 0 \Leftrightarrow x \le \frac{3}{2}\)
Bình phương hai vế của (1) ta được:
\(\begin{array}{l}2 - x = {\left( {3 - 2x} \right)^2}\\ \Rightarrow 2 - x = 9 - 12x + 4{x^2}\\ \Leftrightarrow 4{x^2} - 11x + 7 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\left( {TM} \right)\\x = \frac{7}{4}\left( {KTM} \right)\end{array} \right.\end{array}\)
Vậy tập nghiệm của phương trình là \(S = \left\{ 1 \right\}\)
b) \(\sqrt { - {x^2} + 7x - 6} + x = 4\)\( \Leftrightarrow \sqrt { - {x^2} + 7x - 6} = 4 - x\) (2)
Ta có: \(4 - x \ge 0 \Leftrightarrow x \le 4\)
Bình phương hai vế của (2) ta được:
\(\begin{array}{l} - {x^2} + 7x - 6 = {\left( {4 - x} \right)^2}\\ \Leftrightarrow - {x^2} + 7x - 6 = 16 - 8x + {x^2}\\ \Leftrightarrow 2{x^2} - 15x + 22 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 2\left( {TM} \right)\\x = \frac{{11}}{2}\left( {KTM} \right)\end{array} \right.\end{array}\)
Vậy tập nghiệm của phương trình là \(S = \left\{ 2 \right\}\)
Giải các phương trình sau:
a) \(\sqrt {x + 2} = x\)
b) \(\sqrt {2{x^2} + 3x - 2} = \sqrt {{x^2} + x + 6} \)
c) \(\sqrt {2{x^2} + 3x - 1} = x + 3\)
a) \(\sqrt {x + 2} = x\)
Điều kiện: \(x \ge 0\)
Bình phương 2 vế của phương trình ta được:
\(x + 2 = {x^2} \Leftrightarrow {x^2} - x - 2 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 2\end{array} \right.\)
b) \(\sqrt {2{x^2} + 3x - 2} = \sqrt {{x^2} + x + 6} \)
Bình phương 2 vế của phương trình ta được:
\(\begin{array}{l}2{x^2} + 3x - 2 = {x^2} + x + 6\\ \Leftrightarrow {x^2} + 2x - 8 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = - 4\end{array} \right.\end{array}\)
Thay vào bất phương trình \(2{x^2} + 3x - 2 \ge 0\) ta thấy cả 2 nghiệm đều thỏa mãn.
Vậy tập nghiệm là \(S = \left\{ { - 4;2} \right\}\)
c) \(\sqrt {2{x^2} + 3x - 1} = x + 3\)
Điều kiện: \(x + 3 \ge 0 \Leftrightarrow x \ge - 3\)
Bình phương 2 vế của phương trình ta được:
\(\begin{array}{l}2{x^2} + 3x - 1 = {\left( {x + 3} \right)^2}\\ \Leftrightarrow {x^2} - 3x - 10 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = - 2\left( {tm} \right)\\x = 5\left( {tm} \right)\end{array} \right.\end{array}\)
Vậy tập nghiệm là \(S = \left\{ { - 2;5} \right\}\)
Bài 1: Giải các phương trình sau:
a)\(\dfrac{x-3}{5}+\dfrac{1+2x}{3}=6\)
b)\(\dfrac{2}{x+1}-\dfrac{1}{x-2}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\)
a: =>3x-9+5+10x=90
=>13x-4=90
=>13x=94
hay x=94/13
b: \(\Leftrightarrow2x-4-x-1=3x-11\)
=>3x-11=x-5
=>2x=6
hay x=3(nhận)
Giải các phương trình sau:
a) \(\sqrt {2x - 3}=\sqrt {2{x^2} - 3x - 1}\)
b) \(\sqrt {4{x^2} - 6x - 6} = \sqrt {{x^2} - 6} \)
c) \(\sqrt {x + 9} = 2x - 3\)
d) \(\sqrt { - {x^2} + 4x - 2} = 2 - x\)
a) Bình phương hai vế ta được
\(2{x^2} - 3x - 1 = 2x - 3\)
\(\begin{array}{l} \Leftrightarrow 2{x^2} - 5x +2 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = \frac{1}{2}\end{array} \right.\end{array}\)
Thay các giá trị tìm được vào bất phương trình \(2x - 3 \ge 0\) thì chỉ \(x=2\) thỏa mãn.
Vậy tập nghiệm của phương trình là \(S = \left\{2 \right\}\)
b) Bình phương hai vế ta được
\(\begin{array}{l}4{x^2} - 6x - 6 = {x^2} - 6\\ \Leftrightarrow 3{x^2} - 6x = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\end{array}\)
Thay các giá trị tìm được vào bất phương trình \({x^2} - 6 \ge 0\) thì thấy chỉ có nghiệm \(x = 2\)thỏa mãn.
Vậy tập nghiệm của phương trình là \(S = \left\{ 2 \right\}\)
c) \(\sqrt {x + 9} = 2x - 3\)(*)
Ta có: \(2x - 3 \ge 0 \Leftrightarrow x \ge \frac{3}{2}\)
Bình phương hai vế của (*) ta được:
\(\begin{array}{l}x + 9 = {\left( {2x - 3} \right)^2}\\ \Leftrightarrow 4{x^2} - 12x + 9 = x + 9\\ \Leftrightarrow 4{x^2} - 13x = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\left( {KTM} \right)\\x = \frac{{13}}{4}\left( {TM} \right)\end{array} \right.\end{array}\)
Vậy tập nghiệm của phương trình là \(S = \left\{ {\frac{{13}}{4}} \right\}\)
d) \(\sqrt { - {x^2} + 4x - 2} = 2 - x\)(**)
Ta có: \(2 - x \ge 0 \Leftrightarrow x \le 2\)
Bình phương hai vế của (**) ta được:
\(\begin{array}{l} - {x^2} + 4x - 2 = {\left( {2 - x} \right)^2}\\ \Leftrightarrow - {x^2} + 4x - 2 = {x^2} - 4x + 4\\ \Leftrightarrow 2{x^2} - 8x + 6 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\left( {TM} \right)\\x = 3\left( {KTM} \right)\end{array} \right.\end{array}\)
Vậy tập nghiệm của phương trình là \(S = \left\{ 1 \right\}\)
Giải các phương trình sau:
a, |1 - x| - |x + 1| = 2x
b, x2 - |x - 1| = x(x - 4) + 3
c, x + \(\dfrac{\left|5x-2\right|}{4}\)= 2 - \(\dfrac{x+3}{6}\)
d, |x + 1| + |x + 2| + |2x + 5| = x - 3