5.Tìm số tự nhiên x ,biết
d) 22 . 2x = 16
Tìm số tự nhiên x,biết
d) 125+(24-x)=17
\(125+\left(24-x\right)=17\)
\(\Rightarrow24-x=17-125\)
\(\Rightarrow24-x=-108\)
\(\Rightarrow-x=-108-24\)
\(\Rightarrow-x=-132\)
\(\Rightarrow x=132\)
\(\Rightarrow24-x=17-125=-108\\ \Rightarrow x=24-\left(-108\right)=24+108=132\)
Tìm số tự nhiên x biết
d)26 : ( x- 1) ; 38 : ( x- 1)
d) 26 = 2 . 13
38 = 2 . 19
ƯCLN(26,38) = 2
ƯC(26,38) = Ư(2) = 1,2
Mà theo đề bài : 26 ⋮ (x-1) ; 38 ⋮ (x-1)
Nên : x = 2 hoặc 3
\(26⋮\left(x-1\right);38⋮\left(x-1\right)\Rightarrow x-1\inƯC\left(26,38\right)=\left\{\pm2;\pm1\right\}\Rightarrow x\in\left\{-1;0;2;3\right\}\)
Mà x là số tự nhiên \(\Rightarrow x\in\left\{0;2;3\right\}\)
\(\Rightarrow\left(x-1\right)\inƯC\left(26,38\right)=Ư\left(2\right)=\left\{1;2\right\}\\ \Rightarrow x\in\left\{2;3\right\}\)
Tìm số tự nhiên x, biết:
a, 2(x - 51) = 2.23+20
b, 2x - 49 = 5.32
c, [(8x - 12) : 4].33 = 36
d, 2x+1- 22 = 32
e, (x3 - 77): 4 = 5
a: \(2\left(x-51\right)=2\cdot2^3+20\)
=>\(2\left(x-51\right)=2^4+20=36\)
=>x-51=36/2=18
=>x=18+51=69
b: \(2x-49=5\cdot3^2\)
=>\(2x-49=5\cdot9=45\)
=>2x=45+49=94
=>x=94/2=47
c: \(\left[\left(8x-12\right):4\right]\cdot3^3=3^6\)
=>\(\left[4\cdot\dfrac{\left(2x-3\right)}{4}\right]=3^3\)
=>\(2x-3=3^3=27\)
=>2x=3+27=30
=>x=30/2=15
d: \(2^{x+1}-2^2=32\)
=>\(2^{x+1}=32+2^2=32+4=36\)
=>\(x+1=log_236\)
=>\(x=log_236-1\)
e: \(\left(x^3-77\right):4=5\)
=>\(x^3-77=20\)
=>\(x^3=77+20=97\)
=>\(x=\sqrt[3]{97}\)
Tìm số tự nhiên x , biết:
a) 36 : x - 5 = 2 2
b) 3 . 70 - x + 5 : 2 = 46
c) 450 : 41 - 2 x - 5 = 3 2 . 5
d) 230 + 2 4 + x - 5 = 315 . 2018 0
e) 2 x + 2 x + 1 = 48
f) 3 x + 1 + 3 x = 2430
Tìm số tự nhiên x , biết:
a, 36:(x–5) = 2 2
b, [3.(70–x)+5]:2 = 46
c, 450:[41–(2x–5)] = 3 2 .5
d, 230+[ 2 4 +(x–5)] = 315. 2018 0
e, 2 x + 2 x + 1 = 48
f, 3 x + 2 + 3 x = 2430
a, 36:(x–5) = 2 2
(x–5) = 9
x = 14
b, [3.(70–x)+5]:2 = 46
[3.(70–x)+5] = 92
70–x = 29
x = 41
c, 450:[41–(2x–5)] = 3 2 .5
41–(2x–5) = 10
2x–5 = 31
2x = 36
x = 18
d, 230+[ 2 4 +(x–5)] = 315. 2018 0
16+(x–5) = 315–230
x–5 = 85–16
x = 69+5
x = 74
e, 2 x + 2 x + 1 = 48
2 x .(2+1) = 48
2 x = 16 = 2 4
x = 4
f, 3 x + 2 + 3 x = 2430
3 x . 3 2 + 1 = 2430
3 x = 2430:10 = 243 = 3 5
x = 5
a) Tìm x, y là số tự nhiên biết: xy + x + 2y = 5
b) Tìm x, y là số nguyên để xy + 2x + 2y = -16
a) \(xy+x+2y=5\Leftrightarrow xy+x+2y+2=7\Leftrightarrow\left(y+1\right)\left(x+2\right)=7\)
Vì x,y là số tự nhiên nên \(x,y\in N\)\(x,y\ge0\)\(\Rightarrow y+1\ge1;x+2\ge2\)
Từ đó ta có :
\(\hept{\begin{cases}x+2=7\\y+1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\y=0\end{cases}}}\)
b) \(xy+2x+2y=-16\Leftrightarrow xy+2y+2x+4=-12\Leftrightarrow\left(y+2\right)\left(x+2\right)=-12\)
Lần lượt xét từng trường hợp , ta được :
(x;y) = (-14; -1) ; (-8 ; 0) ; (-6 ; 1) ; (-5 ;2) ; (-4 ;4)
a) \(\left(x+2\right)\left(y+1\right)=7=1.7=7.1\)
Hoặc \(\hept{\begin{cases}x+2=7\\y+1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\y=0\end{cases}}}\in N\)
Hoặc\(\hept{\begin{cases}x+2=1\\y+1=7\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\notin N\\y=6\end{cases}}\)
Vậy \(\left(x;y\right)=\left(5;0\right)\)
b)\(\left(x+2\right)\left(y+2\right)=-1.12=-12.1=-2.6=-6.2=-3.4=-4.3\)
tương tự giải 6 TH là được
a) Ta có xy+x+2y=x(y+1)+2(y+1-1)=x(y+1)+2(y+1)-2=(y+1)(x+2)-2=5 ===> (y+1)(x+2)=7
Lại có: 7=1 . 7=(y+1)(x+2)
Ta có bảng giá trị:
y+1 | 1 | 7 |
x+2 | 7 | 1 |
y | 0 | 6 |
x | 5 | -1 |
câu b bạn làm tuơng tự nha
Câu 16: Tìm số tự nhiên x biết
a)2x + 5 = 34 . 32.
𝑏) 120 – (𝑥 + 55) = 60.
c)x ⋮ 12 và x < 60.
a) \(\Leftrightarrow2x+5=3^6\\ \Leftrightarrow2x+5=729\\ \Leftrightarrow x=362\)
b) \(\Leftrightarrow x+55=60\\ \Leftrightarrow x=5\)
c) \(x=\left\{12;24;36;48\right\}\)
c) x ⋮ 12 và x < 60
x ∈ B(12) = { 0 ; 12 ; 24 ; 36 ; 48 ; 60 ;...}
mà x ⋮ 12 và x < 60
nên x ∈ B(12)= { 0 ; 12 ; 24 ; 36 ; 48 }
Bài 10: Tìm các số nguyên \(x\) biết:
a) \(2x-3\) là bội của \(x+1\)
b) \(x-2\) là ước của \(3x-2\)
Bài 14: Tìm số tự nhiên \(n\) sao cho:
a) \(4n-5\) ⋮ \(2n-1\)
b) \(n^2+3n+1\) ⋮ \(n+1\)
Bài 16: Tìm cặp số tự nhiên \(x\),\(y\) biết:
a) \(\left(x+5\right)\left(y-3\right)=15\)
b) \(\left(2x-1\right)\left(y+2\right)=24\)
c) \(xy+2x+3y=0\)
d) \(xy+x+y=30\)
Bài 10:
a: 2x-3 là bội của x+1
=>\(2x-3⋮x+1\)
=>\(2x+2-5⋮x+1\)
=>\(-5⋮x+1\)
=>\(x+1\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{0;-2;4;-6\right\}\)
b: x-2 là ước của 3x-2
=>\(3x-2⋮x-2\)
=>\(3x-6+4⋮x-2\)
=>\(4⋮x-2\)
=>\(x-2\inƯ\left(4\right)\)
=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{3;1;4;0;6;-2\right\}\)
Bài 14:
a: \(4n-5⋮2n-1\)
=>\(4n-2-3⋮2n-1\)
=>\(-3⋮2n-1\)
=>\(2n-1\inƯ\left(-3\right)\)
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
=>\(2n\in\left\{2;0;4;-2\right\}\)
=>\(n\in\left\{1;0;2;-1\right\}\)
mà n>=0
nên \(n\in\left\{1;0;2\right\}\)
b: \(n^2+3n+1⋮n+1\)
=>\(n^2+n+2n+2-1⋮n+1\)
=>\(n\left(n+1\right)+2\left(n+1\right)-1⋮n+1\)
=>\(-1⋮n+1\)
=>\(n+1\in\left\{1;-1\right\}\)
=>\(n\in\left\{0;-2\right\}\)
mà n là số tự nhiên
nên n=0
Bài 16:
a: \(\left(x+5\right)\left(y-3\right)=15\)
=>\(\left(x+5\right)\left(y-3\right)=1\cdot15=15\cdot1=\left(-1\right)\cdot\left(-15\right)=\left(-15\right)\cdot\left(-1\right)=3\cdot5=5\cdot3=\left(-3\right)\cdot\left(-5\right)=\left(-5\right)\cdot\left(-3\right)\)
=>\(\left(x+5;y-3\right)\in\left\{\left(1;15\right);\left(15;1\right);\left(-1;-15\right);\left(-15;-1\right);\left(3;5\right);\left(5;3\right);\left(-3;-5\right);\left(-5;-3\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(-4;18\right);\left(10;4\right);\left(-6;-12\right);\left(-20;2\right);\left(-2;8\right);\left(0;6\right);\left(-8;-2\right);\left(-10;0\right)\right\}\)
mà (x,y) là cặp số tự nhiên
nên \(\left(x,y\right)\in\left\{\left(10;4\right);\left(0;6\right)\right\}\)
b: x là số tự nhiên
=>2x-1 lẻ và 2x-1>=-1
\(\left(2x-1\right)\left(y+2\right)=24\)
mà 2x-1>=-1 và 2x-1 lẻ
nên \(\left(2x-1\right)\cdot\left(y+2\right)=\left(-1\right)\cdot\left(-24\right)=1\cdot24=3\cdot8\)
=>\(\left(2x-1;y+2\right)\in\left\{\left(-1;-24\right);\left(1;24\right);\left(3;8\right)\right\}\)
=>\(\left(2x;y\right)\in\left\{\left(0;-26\right);\left(2;22\right);\left(4;6\right)\right\}\)
=>\(\left(x;y\right)\in\left\{\left(0;-26\right);\left(1;11\right);\left(2;6\right)\right\}\)
mà (x,y) là cặp số tự nhiên
nên \(\left(x,y\right)\in\left\{\left(1;11\right);\left(2;6\right)\right\}\)
c:
x,y là các số tự nhiên
=>x+3>=3 và y+2>=2
xy+2x+3y=0
=>\(xy+2x+3y+6=6\)
=>\(x\left(y+2\right)+3\left(y+2\right)=6\)
=>\(\left(x+3\right)\left(y+2\right)=6\)
mà x+3>=3 và y+2>=2
nên \(\left(x+3\right)\cdot\left(y+2\right)=3\cdot2\)
=>x=0 và y=0
d: xy+x+y=30
=>\(xy+x+y+1=31\)
=>\(x\left(y+1\right)+\left(y+1\right)=31\)
=>\(\left(x+1\right)\left(y+1\right)=31\)
\(\Leftrightarrow\left(x+1\right)\cdot\left(y+1\right)=1\cdot31=31\cdot1=\left(-1\right)\cdot\left(-31\right)=\left(-31\right)\cdot\left(-1\right)\)
=>\(\left(x+1;y+1\right)\in\left\{\left(1;31\right);\left(31;1\right);\left(-1;-31\right);\left(-31;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;30\right);\left(30;0\right);\left(-2;-32\right);\left(-32;-2\right)\right\}\)
mà (x,y) là cặp số tự nhiên
nên \(\left(x,y\right)\in\left\{\left(0;30\right);\left(30;0\right)\right\}\)
Bài 1: Tìm số tự nhiên x sao cho :
a)x+22 chia hết cho x+2
b)2x-18 chia hết cho x-1
c)3x+5 chia hết cho 2x+1
Bài 2 : Tìm số tự nhiên nhỏ nhất có 9 ước,có 15 ước