Gọi M là giao điểm của đồ thị hàm số y = x + 1 x − 2 với trục hoành. Phương trình tiếp tuyến với đồ thị hàm số trên tại điểm M là
A. 3 y + x + 1 = 0
B. 3 y + x − 1 = 0
C. 3 y − x + 1 = 0
D. 3 y − x − 1 = 0
Gọi d1 là đồ thị hàm số y = − ( 2 m – 2 ) x + 4 m và d 2 là đồ thị hàm số y = 4 x − 1 . Xác định giá trị của m để M(1; 3) là giao điểm của d1 và d2.
A. m = 1 2
B. m = − 1 2
C. m = 2
D. m = −2
+) Nhận thấy M ∈ d 2
+) Ta thay tọa độ điểm M vào phương trình d1 ta được phương trình
3 = − ( 2 m – 2 ) . 1 + 4 m ⇔ m = 1 2
Vậy m = 1 2
Đáp án cần chọn là: A
Gọi (d1) là đồ thị hàm số y = m x + 2 và
(d2) là đô thị hàm số y = 1 x – 1 2
a) Với m = - 12 , xác định toạ độ giao điểm của (d1) và (d2)
b) Xác định giá trị của m để M(- 3; - 3) là giao điểm của (d1) , (d2)
Gọi M là giao điểm của đồ thị hàm số y = x + 1 x − 2 với trục hoành. Phương trình tiếp tuyến với đồ thị hàm số trên tại điểm M là:
A. 3 y + x + 1 = 0
B. 3 y + x − 1 = 0
C. 3 y − x + 1 = 0
D. 3 y − x − 1 = 0
Gọi A là giao điểm của 2 đường thẳng y=-x+1 và y=x+3. Tìm số nguyên dương m để A thuộc đồ thị hàm số y = (m-1)x+m^2-1
Pt hoành độ giao điểm:
\(-x+1=x+3\Rightarrow2x=-2\)
\(\Rightarrow x=-1\Rightarrow y=x+3=2\)
\(\Rightarrow A\left(-1;2\right)\)
Để A thuộc \(y=\left(m-1\right)x+m^2-1\) thì:
\(-1.\left(m-1\right)+m^2-1=2\)
\(\Leftrightarrow m^2-m-2=0\Rightarrow\left[{}\begin{matrix}m=-1\left(loại\right)\\m=2\end{matrix}\right.\)
Cho các hàm số sau : y = 2x + 1 và y = x - 3
a) Vẽ đồ thị của các hàm số trên cùng một mặt phẳng tọa độ
b) Gọi M là giao điểm của hai đồ thị trên . Tìm tọa độ điểm M
Lời giải:
a.
Đồ thị xanh lá: $y=2x+1$
Đồ thị xanh dương: $y=x-3$
b.
PT hoành độ giao điểm:
$y=2x+1=x-3$
$\Leftrightarrow x=-4$
$y=x-3=(-4)-3=-7$
Vậy tọa độ điểm $M$ là $(-4;-7)$
Cho hàm số y=(2x-1)(x-1) .Gọi I là giao điểm 2 đườcng tiệm cận .Tìm điểm M thuộc đồ thị sao cho tiếp tuyến của Đồ thị tại M vuông góc vơi IM
Trước hết xin nói ngay rằng đồ thị của hàm số y = (2x - 1)(x - 1) là một parabol, không có đường tiệm cận nào cả.
Có lẽ bạn muốn nói đến hàm số y = (2x - 1)/(x - 1).
Nếu đúng vậy thì đồ thị của hàm số là một hyperbol vuông góc có hai đường tiệm cận là đường thẳng x = 1 và đường thẳng y = 2.
Giao điểm của hai đường tiệm cận là I(1; 2).
Gọi M(x,y) là một điểm trên đồ thị. Hệ số góc của đường thẳng IM là
m = (y - 2)/(x - 1) = {[(2x - 1)/(x - 1)] - 2}/(x - 1) = [(2x - 1) - 2(x - 1)]/(x - 1)²
m = 1/(x - 1)²
Hệ số góc của đường tiếp tuyến Mt với đồ thị tại M(x,y) là
m' = dy/dx = -1/(x - 1)²
Muốn cho MI và Mt thẳng góc với nhau thì điều kiện cần và đủ là
mm' = -1
-1/(x - 1)^4 = -1
(x - 1)^4 = 1
(x - 1)² = 1
x - 1 = ±1
x = 0 hay x = 2
Có 2 điểm M thỏa mãn điều kiện của bài toán là (0; 1) và (2; 3)
Bài 1: Cho hàm số y = (m - 1) x + m - 3(1) (với m là tham số, m≠1) a) Khi m = 0 hãy v ^ 2 đồ thị hàm số (L) trên mặt phẳng tọa độ Oxy b) Tim m để đồ thị hàm số (1) cắt trục tung tại điểm có tung độ bằng 1 c) Gọi A, B lần lượt là giao điểm của đồ thị hàm số (1) với hai trục tọa độ Ox, Oy. Tim m sao cho tam giác OAB cận.
Cho hai hàm số y = x^2 và y =- x + 2.
a) Vẽ đồ thị của hai hàm số trên cùng một mặt phẳng tọa độ
b) Tìm tọa độ giao điểm của hai đồ thị trên bằng phương pháp đại số
c) Gọi A, B là giao điểm của 2 đồ thị trên. Tính diện tích tam giác AOB
Gọi d 1 là đồ thị hàm số y = m x + 1 v à d 2 là đồ thị hàm số y = 1 2 x − 2 . Xác định giá trị của m để M(2; −1) là giao điểm của d 1 v à d 2 .
A. m = 1
B. m = 2
C. m = − 1
D. m = − 2
+) Nhận thấy M ∈ d 2
+) Ta thay tọa độ điểm M vào phương trình d1 ta được phương trình
− 1 = 2 . m + 1 ⇔ m = − 1
Vậy m = − 1
Đáp án cần chọn là: C