Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 3 2019 lúc 11:19

Chọn D

Trần mai anh
Xem chi tiết
Hồng Phúc
24 tháng 9 2021 lúc 19:32

\(sin\left(\dfrac{\pi}{3}+x\right)\in\left[-1;1\right]\)

\(\Rightarrow y=\dfrac{3}{2}+sin\left(\dfrac{\pi}{3}+x\right)\in\left[\dfrac{1}{2};\dfrac{5}{2}\right]\)

\(\Rightarrow\left\{{}\begin{matrix}y_{min}=\dfrac{1}{2}\\y_{max}=\dfrac{5}{2}\end{matrix}\right.\)

vvvvvvvv
Xem chi tiết
Đinh Văn Nam
Xem chi tiết
Nguyễn Công Thành
Xem chi tiết
Nguyễn Mạnh Vũ
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 10 2023 lúc 12:47

\(f'\left(x\right)=\left(sin^2x\right)'+4\cdot\left(sinx'\right)-5'\)

\(=2\cdot sinx\cdot cosx+4\cdot cosx=2cosx\left(sinx+2\right)\)

\(f'\left(x\right)=0\)

=>\(cosx\left(sinx+2\right)=0\)

=>\(cosx=0\)

=>\(x=\dfrac{\Omega}{2}+k\Omega\)

mà \(x\in\left[0;\dfrac{\Omega}{2}\right]\)

nên \(x=\dfrac{\Omega}{2}\)

\(f\left(\dfrac{\Omega}{2}\right)=sin^2\left(\dfrac{\Omega}{2}\right)+4\cdot sin\left(\dfrac{\Omega}{2}\right)-5\)

=1+4-5=0

\(f\left(0\right)=sin^20+4\cdot sin0-5=-5\)

=>Chọn D

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 4 2019 lúc 15:36

Chọn B

Đặt 

Bài toán quy về tìm giá trị lớn nhất của hàm số y = f(t) trên đoạn [-2;0].

Từ bảng biến thiên ta có giá trị lớn nhất của hàm số y = f(t) trên đoạn [-2;0] là 3.

Vậy giá trị lớn nhất của hàm số f(sin x -1) bằng 3.

écc éc
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 9 2021 lúc 20:25

\(-1\le sin\left(x^2\right)\le1\Rightarrow\)\(0\le\sqrt{1-sin\left(x^2\right)}\le\sqrt{2}\Rightarrow-1\le y\le\sqrt{2}-1\)

\(y_{min}=-1\) khi \(sin\left(x^2\right)=1\Rightarrow x=\pm\sqrt{\dfrac{\pi}{2}+k2\pi}\) (\(k\in N\))

\(y_{max}=\sqrt{2}-1\) khi \(sin\left(x^2\right)=-1\Rightarrow x=\pm\sqrt{-\dfrac{\pi}{2}+k2\pi}\) (\(k\in Z^+\))

loveyoongi03
Xem chi tiết
Ngô Thành Chung
1 tháng 9 2021 lúc 11:33

y = \(\dfrac{sin^2x}{cosx\left(sinx-cosx\right)}+\dfrac{1}{4}\)

y = \(\dfrac{sin^2x}{sinx.cosx-cos^2x}+\dfrac{1}{4}=\dfrac{\dfrac{sin^2x}{cos^2x}}{\dfrac{sinx.cosx}{cos^2x}-1}+\dfrac{1}{4}\)

y = \(\dfrac{tan^2x}{tanx-1}+\dfrac{1}{4}\)

y = \(\dfrac{4tan^2x+tanx-1}{4tanx-4}\). Đặt t =  tanx. Do x ∈ \(\left(\dfrac{\pi}{4};\dfrac{\pi}{2}\right)\) nên t ∈ (1 ; +\(\infty\))\

Ta đươc hàm số f(t) = \(\dfrac{4t^2+t-1}{4t-4}\)

⇒ ymin = \(\dfrac{17}{4}\) khi t = 2. hay x = arctan(2) + kπ