Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 8 2023 lúc 2:16

a: \(y=f\left(x^2\right)=sin\left(x^2\right)\)

b: \(y=f\left(g\left(x\right)\right)=f\left(x^2\right)=sinx^2\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 12 2017 lúc 17:27

Chọn B.

Ta có: ; f(0) = a + 2. 

Vậy để hàm số liên tục tại x = 0 thì a + 2 = 1 a = -1.

AllesKlar
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 4 2022 lúc 21:36

Chọn B

聪明的 ( boy lạnh lùng )
14 tháng 4 2022 lúc 21:36

B

anime khắc nguyệt
14 tháng 4 2022 lúc 21:37

B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 1 2018 lúc 5:33

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 1 2018 lúc 9:36

Đáp án A 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 6 2018 lúc 14:11

Đáp án A

nanpham
Xem chi tiết
Akai Haruma
28 tháng 4 2022 lúc 0:27

Lời giải:
$f'(x)=5(\sin ^23x-4)'(\sin ^23x-4)^4=5.2.\sin 3x (\sin 3x)'.(\sin ^23x-4)^4$

$=30\sin 3x\cos 3x(\sin ^23x-4)^4$

$\Rightarrow k=30$

Nguyễn Minh Hằng
Xem chi tiết
Nguyễn Trọng Nghĩa
20 tháng 1 2016 lúc 11:03

Biến đổi : 

\(5\sin x=a\left(2\sin x-\cos x+1\right)+b\left(2\cos x+\sin x\right)+c\)

         = \(\left(2a+b\right)\sin x+\left(2b-a\right)\cos x+a+c\)

Đồng nhất hệ số hai tử số : 

\(\begin{cases}2a+b=5\\2b-a=0\\a+c=0\end{cases}\)

\(\Rightarrow\) \(\begin{cases}a=2\\b=1\\c=-2\end{cases}\)

Khi đó :

\(f\left(x\right)=\frac{2\left(2\sin x-\cos x+1\right)+\left(2\cos x+\sin x\right)-2}{2\sin x-\cos x+1}\)

\(2+\frac{2\cos x+\sin x}{2\sin x-\cos x+1}-\frac{2}{2\sin x-\cos x+1}\)

Do vậy : 

\(I=2\int dx+\int\frac{\left(2\cos x+\sin x\right)dx}{2\sin x-\cos x+1}-2\int\frac{dx}{2\sin x-\cos x+1}\)

=\(2x+\ln\left|2\sin x-\cos x+1\right|-2J+C\)

Với 

\(J=\int\frac{dx}{2\sin x-\cos x+1}\)

Buddy
Xem chi tiết
Hà Quang Minh
24 tháng 8 2023 lúc 14:09

\(f'\left(x\right)=2x+3sin^2\left(x\right)cos\left(x\right)\\ \Rightarrow f'\left(\dfrac{\pi}{2}\right)=\pi\)

\(\Rightarrow\) Chọn A.

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 21:09

Ta có \(f'\left( x \right) = 2.2\sin \left( {x + \frac{\pi }{4}} \right).{\left[ {\sin \left( {x + \frac{\pi }{4}} \right)} \right]^,} = 4\sin \left( {x + \frac{\pi }{4}} \right)\cos \left( {x + \frac{\pi }{4}} \right) = 2\sin \left( {2x + \frac{\pi }{2}} \right)\)

\( \Rightarrow f''\left( x \right) = 2.2\cos \left( {2x + \frac{\pi }{2}} \right) = 4\cos \left( {2x + \frac{\pi }{2}} \right)\)

Mặt khác \( - 1 \le \cos \left( {2x + \frac{\pi }{2}} \right) \le 1 \Leftrightarrow  - 4 \le f''\left( x \right) \le 4\)

Vậy \(\left| {f''\left( x \right)} \right| \le 4\) với mọi x.