phát biểu định nghĩa đường tròn , điều kiện để 1 điểm nằm trên đường tròn (O;R) nằm bên trong đường tròn (O;R) nằm ngoài đường tròn (O;R)
Cho đường tròn tâm O. Giả sử A, B là hai điểm nằm trên đường tròn. Tìm điều kiện cần và đủ để hai vecto \(\overrightarrow {OA} \) và \(\overrightarrow {OB} \) đối nhau.
Hai vecto \(\overrightarrow {OA} \) và \(\overrightarrow {OB} \) đối nhau \( \Leftrightarrow \) hai tia OA, OB đối nhau và OA = OB.
\( \Leftrightarrow \) O là trung điểm của AB hay AB là đường kính của đường tròn (O).
Vậy điều kiện cần và đủ để hai vecto \(\overrightarrow {OA} \) và \(\overrightarrow {OB} \) đối nhau là AB là đường kính của đường tròn (O).
Cho nửa đường tròn (O) đường kính AB và một điểm M nằm trên nửa đường tròn đó. H là chân đường góc hạ từ M xuống AB
a) Khi AH = 2cm,MH = 4cm hãy tính AB,MA,MB
b) Khi điểm M di động trên nửa đường tròn (O). Hãy xác định vị trí của M để biểu thức : 1/MA2 +1/MB2
c) Tiếp tuyến của (O) tại M cắt tiếp tuyến của (O) tại A ở D, OD cắt AM tại I. Khi điêmr M di động trên nửa đường tròn (O) thì I chạy trên đường nào
a: \(AM=2\sqrt{5}\left(cm\right)\)
\(HB=8cm\)
\(AB=10cm\)
cho 2 điểm B , C cố định nằm trên đường tròn (O ; R) và điểm A thay đổi trên đường tròn đó . Hãy dùng phép đối xứng trục để chứng minh rằng trực tâm H của tam giác ABC nằm trên 1 đường tròn cố định .
Hướng dẫn : khi BC không phải là đường kính , gọi H' là giao điểm của đường thẳng AH với đường tròn (O ; R) . Chứng minh rằng H đối xứng với H' qua đường tròn BC .
- Kẻ đường kính BB’
.Nếu H là trực tâm của tam giác ABC thì AH=B’C. Do C,B’ cố định , cho nên B’C là một véc tơ cố định => AH = B'C
. Theo định nghĩa về phép tịnh tiến điểm A đã biến thành điểm H .
Nhưng A lại chạy trên (O;R) cho nên H chạy trên đường tròn (O’;R) là ảnh của (O;R) qua phép tịnh tiến dọc theo v = B'C
- Cách xác định đường tròn (O’;R) .
Từ O kẻ đường thẳng song song với B’C . Sau đó dựng véc tơ : OO' = B'C
Cuối cùng từ O’ quay đường tròn bán kính R từ tâm O’ ta được đường tròn cần tìm .
cho 2 điểm B , C cố định nằm trên đường tròn (O ; R) và điểm A thay đổi trên đường tròn đó . Hãy dùng phép đối xứng trục để chứng minh rằng trực tâm H của tam giác ABC nằm trên 1 đường tròn cố định .
lấy đường kính AH' hãy chứng minh H và H' đối xứng qua trung điểm I của BC (tức là chứng minh BHCH' là hình bình hành), dễ thôi. H đối xứng với H' qua I mà H' thuộc (O;R) suy ra H thuộc (I;R).
hàm chẵn thì f(x)=f(-x), lấy 2 điểm (-x;b) và (x;b) , hai điểm có trung điểm là (0;b) thuộc x=0 với mọi x vậy đối xứng qua trục Oy.
cho 2 điểm B , C cố định nằm trên đường tròn (O ; R) và điểm A thay đổi trên đường tròn đó . Hãy dùng phép đối xứng trục để chứng minh rằng trực tâm H của tam giác ABC nằm trên 1 đường tròn cố định .
Hướng dẫn : khi BC không phải là đường kính , gọi H' là giao điểm của đường thẳng AH với đường tròn (O ; R) . Chứng minh rằng H đối xứng với H' qua đường tròn BC .
cho 2 điểm B , C cố định nằm trên đường tròn (O ; R) và điểm A thay đổi trên đường tròn đó . Hãy dùng phép đối xứng trục để chứng minh rằng trực tâm H của tam giác ABC nằm trên 1 đường tròn cố định .
Hướng dẫn : khi BC không phải là đường kính , gọi H' là giao điểm của đường thẳng AH với đường tròn (O ; R) . Chứng minh rằng H đối xứng với H' qua đường tròn BC .
Cho hai điểm B,C cố định nằm trên đường tròn (O;R) và điểm A thay đổi trên đường tròn đó. Hãy dùng phép đối xứng trục để chứng minh rằng trực tâm H nằm trên một đường tròn cố định.
- Kẻ AA’ ( là đường kính của (O) ) suy ra BHCA’ là hình bình hành , cho nên BC đi qua trung điểm I của A’H .
- A’H’ song song với BC ( vì cùng vuông góc với AH )
- Từ đó suy ra BC là đường trung bình của tam giác AHH’ – Có nghĩa là BC đi qua trung điểm của HH’ . Mặt khác AH vuông góc với BC suy ra BC là trục đối xứng của HH’ , hay H và H’ đối xứng nhau qua BC.
Gọi H là giao ba đường cao của tam giác ABC . Kéo dài AH cắt (O;R) tại H’ . Nối CH’
- Chứng minh IH=IH’ . Thật vậy
Ta có : \(\widehat{A}=\widehat{BCH'}\) ( Góc nội tiếp chẵn cung BH’ ).(1)
Mặt khác : \(\begin{cases}CH\perp AB\\CI\perp AH'\end{cases}\)\(\Rightarrow\widehat{A}=\widehat{BCH}\) (2)
Từ (1) và (2) suy ra : \(\widehat{BCH}=\widehat{BCH'}\)
Chứng tỏ tam giác HCH’ là tam giác cân . Do BC vuông góc với HH’ , chứng tỏ BC là đường trung trực của HH’ . Hay H và H’ đối xứng nhau qua BC . Cho nên khi A chạy trên đường tròn (O;R) thì H’ cũng chạy trên (O;R) và H sẽ chạy trên đường tròn (O’;R) là ảnh của đường tròn (O;R) qua phép đối xứng trục BC
- Giới hạn quỹ tích : Khi A trùng với B và C thì tam giác ABC suy biến thành đường thẳng . Vì thế trên đường tròn (O’;R) bỏ đi 2 điểm là ảnh của B,C
Cho 2 đường tròn ngoài nhau ( O ; R ) và ( O' ; R' ) . A nằm trên đường tròn ( O ) , B nằm trên đường tròn ( O' ) . Xác định vị trí của các điểm A , B để đoạn thẳng AB có độ dài lớn nhất . nhỏ nhất .
Theo quy tắc 4 điểm thì \(\hept{\begin{cases}OA+AB+O'B\ge OO'\\OA+OO'+O'B\ge AB\end{cases}}\Leftrightarrow\hept{\begin{cases}AB\ge OO'-\left(R+R'\right)\left(const\right)\\AB\le OO'+\left(R+R'\right)\left(const\right)\end{cases}}\)
=> AB nhỏ nhất khi A, B nằm giữa OO' ; A, B lớn nhất khi OO' nằm giữa AB
Cho đường tròn (O) và 1 điểm P nằm bên trong đường tròn (P khác O). Gọi Q là 1 điểm tùy ý trên đường tròn (O). CMR khi điểm Q chuyển động trên đường tròn (O) thì giao điểm M các đường thẳng kẻ qua O vuông góc với PQ và tiếp tuyến kẻ từ Q của đường tròn (O) chạy trên 1 đường thẳng cố định
Cho đường tròn (O) và 1 điểm P nằm bên trong đường tròn (P khác O). Gọi Q là 1 điểm tùy ý trên đường tròn (O). CMR khi điểm Q chuyển động trên đường tròn (O) thì giao điểm M các đường thẳng kẻ qua O vuông góc với PQ và tiếp tuyến kẻ từ Q của đường tròn (O) chạy trên 1 đường thẳng cố định.
chiu
moi hoc lop 5 thui
doi toan lop 9 o dau ra