Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 0:57

Hai vecto \(\overrightarrow {OA} \) và \(\overrightarrow {OB} \) đối nhau \( \Leftrightarrow \) hai tia OA, OB đối nhau và OA = OB.

\( \Leftrightarrow \) O là trung điểm của AB hay AB là đường kính của đường tròn (O).

Vậy điều kiện cần và đủ để hai vecto \(\overrightarrow {OA} \) và \(\overrightarrow {OB} \) đối nhau là AB là đường kính của đường tròn (O).

Phạm Thị Huyền Nhâm
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 12 2021 lúc 22:08

a: \(AM=2\sqrt{5}\left(cm\right)\)

\(HB=8cm\)

\(AB=10cm\)

Lê Hoàng Danh
11 tháng 12 2021 lúc 22:09
Lê Hoàng Danh
11 tháng 12 2021 lúc 22:10

Bình Trần Thị
Xem chi tiết
Lê Nguyên Hạo
26 tháng 8 2016 lúc 18:10

- Kẻ đường kính BB’

.Nếu H là trực tâm của tam giác ABC thì AH=B’C. Do C,B’ cố định , cho nên B’C là một véc tơ cố định => AH = B'C

. Theo định nghĩa về phép tịnh tiến điểm A đã biến thành điểm H .

Nhưng A lại chạy trên (O;R) cho nên H chạy trên đường tròn (O’;R) là ảnh của (O;R) qua phép tịnh tiến dọc theo v = B'C

- Cách xác định đường tròn (O’;R) .

Từ O kẻ đường thẳng song song với B’C . Sau đó dựng véc tơ : OO' = B'C

Cuối cùng từ O’ quay đường tròn bán kính R từ tâm O’ ta được đường tròn cần tìm .

Nguyễn Anh Duy
26 tháng 8 2016 lúc 18:15

cho 2 điểm B , C cố định nằm trên đường tròn (O ; R) và điểm A thay đổi trên đường tròn đó . Hãy dùng phép đối xứng trục để chứng minh rằng trực tâm H của tam giác ABC nằm trên 1 đường tròn cố định .

lấy đường kính AH' hãy chứng minh H và H' đối xứng qua trung điểm I của BC (tức là chứng minh BHCH' là hình bình hành), dễ thôi. H đối xứng với H' qua I mà H' thuộc (O;R) suy ra H thuộc (I;R). 
hàm chẵn thì f(x)=f(-x), lấy 2 điểm (-x;b) và (x;b) , hai điểm có trung điểm là (0;b) thuộc x=0 với mọi x vậy đối xứng qua trục Oy.

Bình Trần Thị
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Nguyễn Hoàng Minh Đức
Xem chi tiết
Ngô Võ Thùy Nhung
14 tháng 4 2016 lúc 12:46

- Kẻ AA’ ( là đường kính của (O) ) suy ra BHCA’ là hình bình hành , cho nên BC đi qua trung điểm I của A’H .

- A’H’ song song với BC ( vì cùng vuông góc với AH )

- Từ đó suy ra BC là đường trung bình của tam giác AHH’ – Có nghĩa là BC đi qua trung điểm của HH’ . Mặt khác AH vuông góc với BC suy ra BC là trục đối xứng của HH’ , hay H và H’ đối xứng nhau qua BC.

Bùi Giao Hòa
14 tháng 4 2016 lúc 12:49

Gọi H là giao ba đường cao của tam giác ABC . Kéo dài AH cắt (O;R) tại H’ . Nối CH’

- Chứng minh IH=IH’ . Thật vậy

          Ta có : \(\widehat{A}=\widehat{BCH'}\) ( Góc nội tiếp chẵn cung BH’ ).(1)

Mặt khác : \(\begin{cases}CH\perp AB\\CI\perp AH'\end{cases}\)\(\Rightarrow\widehat{A}=\widehat{BCH}\) (2)

Từ (1) và (2) suy ra : \(\widehat{BCH}=\widehat{BCH'}\)

Chứng tỏ tam giác HCH’ là tam giác cân . Do BC vuông góc với HH’ , chứng tỏ BC là đường trung trực của HH’ . Hay H và H’ đối xứng nhau qua BC . Cho nên khi A chạy trên đường tròn (O;R) thì H’ cũng chạy trên (O;R) và H sẽ chạy trên đường tròn (O’;R) là ảnh của đường tròn (O;R) qua phép đối xứng trục BC

- Giới hạn quỹ tích : Khi A trùng với B và C thì tam giác ABC suy biến thành đường thẳng . Vì thế trên đường tròn (O’;R) bỏ đi 2 điểm là ảnh của B,C 

Le Minh Hieu
Xem chi tiết
Phùng Minh Quân
21 tháng 8 2019 lúc 18:15

Theo quy tắc 4 điểm thì \(\hept{\begin{cases}OA+AB+O'B\ge OO'\\OA+OO'+O'B\ge AB\end{cases}}\Leftrightarrow\hept{\begin{cases}AB\ge OO'-\left(R+R'\right)\left(const\right)\\AB\le OO'+\left(R+R'\right)\left(const\right)\end{cases}}\)

=> AB nhỏ nhất khi A, B nằm giữa OO' ; A, B lớn nhất khi OO' nằm giữa AB 

Bùi Việt Anh
Xem chi tiết
Bùi Việt Anh
Xem chi tiết
daolehoang
12 tháng 12 2018 lúc 11:24

chiu

moi hoc lop 5 thui

doi toan lop 9 o dau ra