Xét hình chắn phía parabol P : y = x 2 , phía trên đường thẳng đi qua điểm A( 1;4 ) và hệ số góc k. Xác định k để hình phẳng trên có diện tích nhỏ nhất.
A. k = 2
B. k = 1
C. k = -1
D. k = 0
Xét hình chắn phía parabol (P) y = x2, phía trên đường thẳng đi qua điểm A(1;4) và hệ số góc k. Xác định k để hình phẳng trên có diện tích nhỏ nhất.
A. k = 2.
B. k = 1.
C. k = -1.
D. k = 0.
Đường thẳng d đi qua A(1;4) với hệ số góc k có phương trình
y = k(x-1)+4
Phương trình hoành độ giao điểm (P) và d là
Ta có
Suy ra phương trình trên luôn có hai nghiệm phân biệt và giả sử rằng hai nghiệm đó x1 < x2
Đáp án B
trên mặt phẳng tọa độ Oxy cho parabol y=x^2 (P) và đường thẳng y=mx+3-m .
a)chứng minh đường thẳng d luôn đi qua điểm M(1,3)
b)tìm m đề đường thẳng (d)cắt parabol tại hai điểm phân biệt nằm về 2 phía của điểm M
a: Thay x=1 và y=3 vào (d), ta được:
m+3-m=3
=>3=3(luôn đúng)
b: PTHĐGĐ là:
x^2-mx-3+m=0
=>x^2-mx+m-3=0
Để (d) cắt (P) tại hai điểm phân biệt thì m-3<0
=>m<3
Cho parabol (P) : y = -x^2 và đường thẳng (d) có hệ số góc m đi qua điểm M(-1 ; -2) .
a). Chứng minh rằng với mọi giá trị của m (d) luôn cắt (P) tại hai điểm A , B phân biệt
b). Xác định m để A,B nằm về hai phía của trục tung
Cho parabol (P) : y = -x^2 và đường thẳng (d) có hệ số góc m đi qua điểm M(-1 ; -2) .
a). Chứng minh rằng với mọi giá trị của m (d) luôn cắt (P) tại hai điểm A , B phân biệt
b). Xác định m để A,B nằm về hai phía của trục tung
a: (d) có hệ số góc là m nên (d): y=mx+b
Thay x=-1 và y=-2 vào (d), ta được:
\(m\cdot\left(-1\right)+b=-2\)
=>b-m=-2
=>b=m-2
=>(d): y=mx+m-2
Phương trình hoành độ giao điểm là:
\(-x^2=mx+m-2\)
=>\(-x^2-mx-m+2=0\)
=>\(x^2+mx+m-2=0\)(1)
\(\text{Δ}=m^2-4\cdot1\cdot\left(m-2\right)\)
\(=m^2-4\left(m-2\right)\)
\(=m^2-4m+8=\left(m-2\right)^2+4>=4\forall m\)
=>(P) luôn cắt (d) tại hai điểm phân biệt
b: Để (P) cắt (d) tại hai điểm nằm về hai phía so với trục tung thì phương trình (1) phải có hai nghiệm phân biệt trái dấu
=>1(m-2)<0
=>m-2<0
=>m<2
Cho parabol (P): \(x^2+2x-3\) và đường thẳng d:y=x+m. Tìm m để d
cắt (P) tại hia điểm phân biệt A, B nằm về hai phía đường thẳng y=1.
Phân tích: Phương trình hoàn độ giao điểm:
\(x^2+2x-3=x+m\Leftrightarrow x^2+x-3-m=0\left(1\right)\)
\(\left(d\right)\) cắt \(\left(P\right)\) tại 2 điểm phân biệt A ; B
=> (1) có 2 nghiệm phân biệt
<=> \(\Delta>0\) \(\Leftrightarrow m>\dfrac{-13}{4}\left(2\right)\)
giả sử: \(A\left(x_1;y_1\right),B\left(x_2;y_2\right)\) với \(x_1;x_2\) là hai nghiệm của (1) Ta phải có :
\(\left(y_1-1\right)\left(y_2-2\right)< 0\Leftrightarrow\left(x_1+m-1\right)\left(x_2+m-1\right)< 0\)
\(\Leftrightarrow x_1x_2+\left(m-1\right)\left(x_1+x_2\right)+m^2-2m+1< 0\)
\(\Leftrightarrow m^2-4m-1< 0\Leftrightarrow2-\sqrt{5}< m< 2+\sqrt{5}\left(thỏa\left(2\right)\right)\)
\(m\in Z\Rightarrow m\in\left\{0;1;2;3;4\right\}\)
Cho Parabol (P): y=x^2 và đường thẳng (d): y=2x-m^2+9
a. Tìm toạ độ các giao điểm của Parabol (P) và đường thẳng (d) khi m = 1.
b. Tìm m để đường thẳng (d) cắt Parabol (P) tại hai điểm nằm về hai phía của trục tung.
Giải chi tiết hộ mình nha
a) Khi \(m=1\) \(\Rightarrow\left(d\right):y=2x+8\)
Xét phương trình hoành độ giao điểm
\(x^2=2x+8\) \(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
+) Với \(x=4\Rightarrow y=16\)
+) Với \(x=-2\Rightarrow y=4\)
Vậy khi \(m=1\) thì (P) cắt (d) tại 2 điểm phân biệt \(\left(4;16\right)\) và \(\left(-2;4\right)\)
b) Xét phương trình hoành độ giao điểm
\(x^2-2x+m^2-9=0\) (*)
Ta có: \(\Delta'=10-m^2\)
Để (P) cắt (d) \(\Leftrightarrow\) Phương trình (*) có 2 nghiệm phân biệt
\(\Leftrightarrow\Delta'=10-m^2>0\) \(\Leftrightarrow-\sqrt{10}< m< \sqrt{10}\)
Theo đề: (P) cắt (d) tại 2 điểm nằm về 2 phía của trục tung
\(\Leftrightarrow\) Phương trình (*) có 2 nghiệm trái dấu
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\\x_1x_2< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}10-m^2>0\\m^2-9< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-\sqrt{10}< m< \sqrt{10}\\-3< m< 3\end{matrix}\right.\) \(\Leftrightarrow-3< m< 3\)
Vậy ...
cho parabol (p): y=x2,đường thẳng (d) đi qua điểm N(-1;-2) có hệ số góc k
a, chứng minh rằng :với mọi giá trị k thì đường thẳng (d) luôn cắt (p) tại 2 điểm A,B.Tìm k để A,B nằm về 2 phía của trụ tung
b,gọi (x1,y1),(x2;y2) lần lượt là tọa độ của các điểm A,B nói trên . tìm k sao cho tổng ( x1+y1+x2+y2)đạt giá trị lớn nhất
Cho parabol (P) : y = -x2 và đường thẳng (d) có hệ số góc m đi qua điểm M(-1 ; -2) .
a). Chứng minh rằng với mọi giá trị của m (d) luôn cắt (P) tại hai điểm A , B phân biệt
b). Xác định m để A,B nằm về hai phía của trục tung
Cho parabol (P) y = mx^2 và đường thẳng (d) y = -3x + 5
a) Tìm m để (P) đi qua A ( -1; 2). Hãy vẽ (P) với m vừa tìm được
b) Tìm m để (d) cắt (P) tại 2 điểm phân biệt nằm khác phía của trục tung