cho parabol (P):y=x\(^2\) và đường thẳng (d):y=2x-m+3 tìm m để (P) và (d) cắt nhau tại hai điểm nằm về hai phía của trục tung
Cho parabol \(\left(P\right):y=x^2\) và đường thẳng \(\left(d\right):y=\left(2m+1\right)x+1-m^2\) (với m là tham số). Tìm m để (d) cắt (P) tại 2 điểm nằm về hai phía của trục tung
Cho parabol (P): \(y=x^2\) và đường thẳng (d): \(y=mx+2\) ( m là tham số).
a) Chứng minh rằng với mọi giá trị của m thì đường thẳng (d)luôn cắt parabol (P) tại hai điểm phân biệt M và N.
b) Gọi A là giao điểm của đường thẳng (d) với trục tung. Tìm tất cả các giá trị của m để M và N đối xứng với nhau qua điểm A.
BÀI 1 :Cho parabol y=x^2 và đường thẳng d:y= -2x+m
1. Với m = 3, hãy:
a) Vẽ (d) và (P) trên cùng một mặt phẳng tọa độ.
b) Tìm tọa độ các giao điểm M và N của (d) và (P).
c) Tính độ dài đoạn thẳng MN.
2. Tìm các giá trị của m để:
a) (d) và (P) tiếp xúc nhau.
b) (d) cắt (P) tại hai điểm phân biệt.
BÀI 2:
Trong mặt phẳng tọa độ Oxy cho M(1;2) và đường thẳng d: y=-3x+1
1. Viết phương trình đường thẳng (d') đi qua M và song song với (d).
2. Cho parabol P: y=mx^2. Tìm các giá trị của tham số m để (d) và (P) cắt nhau tại hai điểm phân biệt A, B nằm cùng phía đối với trục tung.
BÀI 3:
Cho parabol P: y=x^2 và đường thẳng d:y= 2mx-2m+3
a) Tìm tọa độ các điểm thuộc (P) biết tung độ của chúng bằng 2.
b) Chứng minh với mọi giá trị của tham số m thì đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt.
c) Gọi y1,y2 là tung độ các giao điểm của (d) và (P). Tìm các giá trị của tham số m để y1+y2<9
BÀI 4:
Cho parabol P:y=ã^2 và đường thẳng d:y= 2mx-m+2
1. Xác định tham số a biết (P) đi qua A(1;-1).
2. Biện luận số giao điểm của (P) và (d) theo tham số m.
BÀI 5:
Cho parabol P:y=x^2/2 và đường thẳng d:y= 1/2*x+2
1. Với n = 1, hãy:
a) Vẽ (d) và (P) trên cùng một mặt phẳng tọa độ.
b) Tìm tọa độ các giao điểm A và B của (d) và (P).
c) Tính diện tích tam giác AOB.
2. Tìm các giá trị của n để:
a) (d) và (P) tiếp xúc nhau.
b) (d) cắt (P) tại hai điểm phân biệt.
c) (d) cắt (P) tại hai điểm nằm về hai phía đối của trục Oy.
Trong mặt phẳng toạ độ Oxy cho Parabol (P): \(y=x^2\) và đường thẳng (d): \(y=mx+2\)
a) Chứng minh rằng với mọi giá trị của m thì đường thẳng (d) luôn cắt parabol (P) tại 2 điểm nằm về 2 phía của trục tung
b) Giả sử đường thẳng (d) cắt Parabol (P) tại \(A\left(x_1;y_1\right)\) và \(B\left(x_2;y_2\right)\). Tìm giá trị của m để \(\left|y_1-y_2\right|=\sqrt{24-x^2_2-mx_1}\)
Cho đường thẳng (d): y = mx - 2 và Parabol (P): y = -x2. Giá trị của m để (P) và (d) cắt nhau tại 2 điểm nằm về hai phía đối với trục tung.
A. \(m>\sqrt{8}\)
B. Với mọi giá trị m
C. \(m\ge8\)
D. \(m>8\)
Cho parabol (P): y=x2 và đường thẳng (d): y=2x-m2+9
1. Tìm tọa độ các giao điểm của Parabol (P) và đường thẳng (d) khi m=1
2. Tìm (m) để đường thẳng (d) cắt parabol (P) tai hai điểm nằm về hai phía của trục tung
1) Xác định giá trị m để ba điểm A(2,1) , B(-2,2) , C(m-1,m) là ba điểm thẳng hàng . 2) Trong mặt phẳng toạ độ Oxy , cho đường thẳng (d) : y = mx+1 và parabol (P) : y =2x2 . Tìm m để đường thẳng (d) đi qua điểm A(1;3) . Chứng minh rằng (d) cắt (P) tại hai điểm phân biệt A(x1;y2) và B(x2;y2) . Hãy tính giá trị của T=x1x2+y1y2.
Cho (P) y = 2x2 và đường thẳng (d) y = 4x + m . Tìm giá trị m lớn nhất để đường thẳng (d) cắt parabol P tại hai điểm A, B và cắt trục tung tại M sao cho MA = 3MB