Cho hàm số f x = x 3 − 6 x 2 + 9 x + 1 có đồ thị (C) Có bao nhiêu tiếp tuyến của đồ thị (C) tại điểm thuộc đồ thị (C)có tung độ là nghiệm phương trình 2 f ' x − x . f ' ' x − 6 = 0.
A. 1
B. 4
C. 3
D. 2
Cho hàm số :y=f(x) = (a+2)x-3a+2. Tìm a biết f(3)=9 , f(5)=11, f(-1)=6
Cho hàm số y = f ( x ) có đạo hàm f ' ( x ) = ( x - 2 ) ( x 2 - 3 ) ( x 4 - 9 ) . Số điểm cực trị của hàm số y = f ( x ) là
A. 3
B. 4
C. 2
D. 1
a) cho hàm số y=(f)x=x^6+1/x^3.cmr f(1/2)=f(x)
b) cho hàm số y=(f)x=x^2+1/x^2.CMR f(x)=f(-x)
c) cho hàm số y=(f)x=5^x. Tính f(x+1)-f(x)
HELPPPPPPPPPPPPP ME!
Cho hàm số y= f( x) có đạo hàm f ' ( x ) = x 2 ( x - 9 ) ( x - 4 ) 2 . Xét hàm số y= g( x) =f( x2) Trong các phát biểu sau; tìm số phát biểu đúng
I. Hàm số y = g( x) đồng biến trên( 3; +∞)
II. Hàm số y= g(x) nghịch biến trên( -∞; -3)
III. Hàm số y= g( x) có 5 điểm cực trị
IV. m i n x ∈ R g ( x ) = f ( 9 )
A. 1
B. 2
C. 3
D. 4
Ta có
Bảng biến thiên của hàm số y= g( x)
Dựa vào bảng biến thiên ta thấy hàm số đồng biến trên khoảng ( 3: + ∞) hàm số nghịch biến trong khoảng (-∞; -3) .
Hàm số có 3 cực trị, hàm số đạt giá trị nhỏ nhất tại x= ±3
Vậy có 3 khẳng định đúng là khẳng định I, II, IV
Chọn C.
Cho hàm số y=f(x) có đạo hàm f'(x)= x ( x - 1 ) 2 ( x 2 + m x + 9 ) . Có bao nhiêu số nguyên dương m để hàm số y=f(3-x) đồng biến trên khoảng ( 3 ; + ∞ ) .
A. 6.
B. 8.
C. 5.
D. 7.
. a) Cho hàm số y = f(x) = 2x2 + 5x – 3. Tính f(1); f(0); f(1,5).
b) Cho hàm số: y = f(x) = ax - 3
Tìm a biết f(3) = 9; f(5) = 11; f(-1) = 6.
a)\(f\left(1\right)=2.1^2+5.1-3=2+5-3=4\)
\(f\left(0\right)=0+0-3=-3\)
\(f\left(1,5\right)=2.\left(1,5\right)^2-5.1,5-3=4,5-7,5-3=-6\)
b)\(f\left(3\right)=3a-3=9=>>3a=12=>a=4\)
\(f\left(5\right)=5a-3=11=>5a=14=>a=\dfrac{14}{5}\)
\(f\left(-1\right)=-a-3=6=>-a=9=>a=-9\)
Bài 1. Cho hàm số y= f(x)= {-2(x2 + 1) khi x ≤ 1 Tính f(1);f(2),f(√2 phần 2);f(√2)
{4√x-1 khi x > 1
Bài 2.Cho hàm số y= f(x)= { √-3x+8 khi x < 2 Tính f(-3);f(2);f(1),f(9)
{√x+7 khi x ≥ 2
Ở góc trái khung soạn thảo có hỗ trợ viết công thức toán (biểu tượng $\sum$). Bạn viết lại đề bằng cách này để được hỗ trợ tốt hơn.
cho hàm số f(x)=9^x/9^x+3.Tính f(1/2019)+f(2/2019)+f(3/2019)+.....+f(2018/2019)
bài này không khó nghe em chẳng qua là nó hơi dài
em phải nhớ công thức tính tổng của dãy số, công thức tổng quát ấy là n.(a1+an)/2 (n là số số hạng, a1 là phần tử thứ nhất và an là phần tử thứ n)
số số hạng thì dễ rồi đúng k
còn a1+an là bằng f(1/2019)+f(2018/2019)
em thế f(1/2019) vào f(x) cái kia cũng vậy
xong em chịu khó nhân vào có dạng là a^n.a^m
vậy là ra thôi em
Hàm nào sau đây là nguyên hàm của hàm số f(x)=1/9+x^2+3/9+x^2:
A.1/3 arctan x/3+1/2.1n|3+x/3-x|
B.1/3 arctan x/3-1n|3+x/3-x|
C.1/3 arctan x/3-1/2.1n|3+x/3-x|
D. arctan x/3-1/6 1n|3+x/3-x|.
Ý bạn là \(f(x)=\frac{1}{9+x^2}+\frac{3}{9+x^2}\) hay thế nào? Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo để được hỗ trợ tốt hơn).
cho hàm số y=f(x)=\(\sqrt{x^2-6x+9}\)
a)tính f(-1), f(5)
b)tìm x để f(x)=10
c) rút gọn A=\(\dfrac{f\left(x\right)}{x^2-9}\) (x≠ -3 và x≠3)
a: \(f\left(x\right)=\sqrt{x^2-6x+9}=\sqrt{\left(x-3\right)^2}=\left|x-3\right|\)
\(f\left(-1\right)=\left|-1-3\right|=4\)
\(f\left(5\right)=\left|5-3\right|=\left|2\right|=2\)
b: f(x)=10
=>\(\left[{}\begin{matrix}x-3=10\\x-3=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\\x=-7\end{matrix}\right.\)
c: \(A=\dfrac{f\left(x\right)}{x^2-9}=\dfrac{\left|x-3\right|}{\left(x-3\right)\left(x+3\right)}\)
TH1: x<3 và x<>-3
=>\(A=\dfrac{-\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{-1}{x+3}\)
TH2: x>3
\(A=\dfrac{\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{1}{x+3}\)