Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 12 2019 lúc 4:43

Chọn D.

Ta có: f’(x) = 6x – 1 f’(2) = 11

df(2) = f’(2) Δx = 11.0,1 = 1,1

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 5 2018 lúc 15:26

Chọn B.

Ta có:

f’(x) = 3cos(3x – 2) – 2x.sin(x2 + 1)

 

Nên df(xo) = f’(xo). Δx = [3cos(3.0 – 2) – 2.0.sin(0 + 1)].0,5 ≈ -0,624

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 10 2017 lúc 4:36

Chọn D.

Ta có

títtt
Xem chi tiết
Nguyễn Đức Trí
15 tháng 9 2023 lúc 19:47

1) \(f\left(x\right)=2x-5\)

\(f'\left(x\right)=2\)

\(\Rightarrow f'\left(4\right)=2\)

2) \(y=x^2-3\sqrt[]{x}+\dfrac{1}{x}\)

\(\Rightarrow y'=2x-\dfrac{3}{2\sqrt[]{x}}-\dfrac{1}{x^2}\)

3) \(f\left(x\right)=\dfrac{x+9}{x+3}+4\sqrt[]{x}\)

\(\Rightarrow f'\left(x\right)=\dfrac{1.\left(x+3\right)-1.\left(x+9\right)}{\left(x-3\right)^2}+\dfrac{4}{2\sqrt[]{x}}\)

\(\Rightarrow f'\left(x\right)=\dfrac{x+3-x-9}{\left(x-3\right)^2}+\dfrac{2}{\sqrt[]{x}}\)

\(\Rightarrow f'\left(x\right)=\dfrac{12}{\left(x-3\right)^2}+\dfrac{2}{\sqrt[]{x}}\)

\(\Rightarrow f'\left(x\right)=2\left[\dfrac{6}{\left(x-3\right)^2}+\dfrac{1}{\sqrt[]{x}}\right]\)

\(\Rightarrow f'\left(1\right)=2\left[\dfrac{6}{\left(1-3\right)^2}+\dfrac{1}{\sqrt[]{1}}\right]=2\left(\dfrac{3}{2}+1\right)=2.\dfrac{5}{2}=5\)

Nguyễn Lê Phước Thịnh
15 tháng 9 2023 lúc 19:42

loading...  loading...  

Shinigami Kenjo
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 6 2019 lúc 14:33

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 5 2018 lúc 11:33

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 5 2017 lúc 2:53

Chọn đáp án D

Do hàm số đạt cực đại tại điểm x=1 f′(1) = 0 và đường thẳng Δ qua hai điểm (0;−3);(1;0) nên có phương trình y=3x−3.

Δ là tiếp tuyến của đồ thị hàm số  f(x) tại điểm có hoành độ  x = 2 ⇒ f ' ( 2 ) = k △ =3

Vậy

 

 

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 1 2017 lúc 8:33

Đáp án A

(1) Nếu hàm số f(x) có đạo hàm tại điểm x = x 0 thì f(x) liên tục tại điểm đó. Đây là mệnh đề đúng.

(2) Nếu hàm số f (x) liên tục tại điểm x = x 0  thì f(x) có đạo hàm tại điểm đó.

Phản ví dụ

Lấy hàm f ( x ) = x  ta có D= R nên hàm số f(x) liên tục trên R.

Nhưng ta có  l i m x → 0 + f ( x ) - f ( 0 ) x - 0 = l i m x → 0 + x - 0 x - 0 = l i m x → 0 + x - 0 x - 0 = 1 l i m x → 0 - f ( x ) - f ( 0 ) x - 0 = l i m x → 0 - x - 0 x - 0 = l i m x → 0 - - x - 0 x - 0 = - 1

Nên hàm số không có đạo hàm tại x = 0.

Vậy mệnh đề (2) là mệnh đề sai.

(3) Nếu f(x) gián đoạn tại  x = x 0  thì chắc chắn f(x) không có đạo hàm tại điểm đó.

Vì (1) là mệnh đề đúng nên ta có f(x)  không liên tục tại  x = x 0  thì f(x) không có đạo hàm tại điểm đó.

Vậy (3) là mệnh đề đúng.