Hoàn thiện các hằng đẳng thức sau:
a) 4 x 4 + 12 x 2 y + ... = (2 x 2 + ...)
b) … - 4xy+ 4 = ( 2 - . . . ) 2 ;
c) -4 x 2 - … + … = - ( 2 x - y ) 2 ;
d) (-2x + …) (… - y2) = 4x2 - y4.
tối giản biểu thức sau:
a)f(x,y)=\(( \dfrac 1 3 .x+2y)( \dfrac 1 9 x^2 - \dfrac 2 3 xy + 4y^2)\)
b)f(x)=\((x^2-\dfrac 13)(x^4+\dfrac 13x^2+\dfrac 19)\)
( sử dụng các hằng đẳng thức đáng nhớ)
\(\left(\dfrac{1}{3}.x+2y\right)\left(\dfrac{1}{9}x^2-\dfrac{2}{3}xy+4y^2\right)=\left(\dfrac{1}{3}.x\right)^3+\left(2y\right)^3=\dfrac{1}{27}x^3+8y^3\)
b: \(f\left(x\right)=\left(x^2\right)^3-\left(\dfrac{1}{3}\right)^3=x^6-\dfrac{1}{27}\)
Chứng minh các hằng đẳng thức sau:
a) (a - b)^2 = (a + b)^2 - 4ab
b) (x + y)^2 + (x - y)^2 = 2(x^2 + y^2)
a) Ta có:
\(VT=\left(a-b\right)^2\)
\(=a^2-2\cdot a\cdot b+b^2\)
\(=a^2-2ab+b^2\)
\(=a^2-4ab+2ab+b^2\)
\(=\left(a^2+2ab+b^2\right)-4ab\)
\(=\left(a+b\right)^2-4ab=VP\)
⇒ Đpcm
b) Ta có:
\(VT=\left(x+y\right)^2+\left(x-y\right)^2\)
\(=x^2+2\cdot x\cdot y+y^2+x^2-2\cdot x\cdot y+y^2\)
\(=x^2+2xy+y^2+x^2-2xy+y^2\)
\(=\left(x^2+x^2\right)+\left(2xy-2xy\right)+\left(y^2+y^2\right)\)
\(=2x^2+0+2y^2\)
\(=2x^2+2y^2\)
\(=2\left(x^2+y^2\right)=VP\)
⇒ Đpcm
a: (a-b)^2
=a^2-2ab+b^2
=a^2+2ab+b^2-4ab
=(a+b)^2-4ab
b: (x+y)^2+(x-y)^2
=x^2+2xy+y^2+x^2-2xy+y^2
=2x^2+2y^2
=2(x^2+y^2)
1)Rút gọn:
(a+b-c)+(a-b+c)2-2(b-c)2
2)Hoàn thiện hằng đẳng thức sau:
x2-2x.(y+2)+y4+4y+4
2) x^2 -2(y+2) +(y+2)^2
=(x-y-2)^2
t i c k cho mình mình sẽ làm típ cho
Bài 7 : hoàn thiện các hằng đẳng thức sau
a. .... - 10x + 25x = ( x - .... )2
b. .... - 4x2 + x4 = ( .... - x2 )2
c. x2 - .... + 9y2 = ( x - ....)2
d. ( 2x + ....) ( .... - y2 ) = 4x2 - y4
a. \(x^2-10x+25=\left(x-5\right)^2\)
b.\(4-4x^2+x^4=\left(2-x^2\right)^2\)
c. \(x^2-6y+9y^2=\left(x-3y\right)^2\)
d. \(\left(2x+y^2\right)\left(2x-y^2\right)=4x^2-y^4\)
a) x2 - 10x + 25x = ( x - 5)2
b) 4 - 4x2 + x4 = ( 2 - x2 )2
c) x2 - 6xy + 9y2 = (x - 3y )2
d_ (2x + y2 ). (2x - y2 ) = 4x2 - y4
Điền các đơn thức vào chỗ để hoàn thành các hằng đẳng thức sau:
a) x 2 + 4x + ... = ( x + . . . ) 2 ; b) ...-12x + 9 = ( 2 x - . . . ) 2 ;
c) 4 x 2 +...+... ( 2 x - 3 y ) 2 ; d) x − . .. ( . .. + y 2 ) = . .. − y 2 4 .
Hoàn thiện HĐT ta thu được các đơn thức cần điền vào “…”.
a) x 2 + 4x + 4 = ( x + 2 ) 2 . b) 4 x 2 – 12x + 9 = ( 2 x – 3 ) 2 .
c) 4 x 2 – 12xy + 9 y 2 = ( 2 x – 3 y ) 2 .
Chú ý: phép trừ ta chuyển thành cộng đại số.
d) x − y 2 x + y 2 = x 2 − y 2 4 .
Chứng minh các hằng đẳng thức :
\(x^4+y^4+\left(x+y\right)^4=2\left(x^2+xy+y^2\right)^2\)
x4+y4+(x+y)4=x4+y4+x4+4x3y+6x2y2+4xy3+y4
=2x4+2y4+4x2y2+4x3y+4xy3+2x2y2
=2(x4+y4+2x2y2)+4xy(x2+y2)+2x2y2
=2(x2+y2)2+4xy(x2+y2)+2x2y2
=2[(x2+y2)+2xy(x2+y2)+x2y2]
=2(x2+y2+xy)2 (Đpcm)
Cho x + y = 4 tính: ( Hằng đẳng thức )
( x + y )^3 - 12x + 24x - 12
Đầy đủ các bước nhé!!!
Suy ra:4^3-12x+24x-12= 64 +12x-12
= 12x+52
mk ko bik co dung ko sai thi thoi nha!
khai triển các hằng đẳng thức sau:
a. \(\left(2xy-3\right)^2\)
b. \(\left(\dfrac{1}{2}x+\dfrac{1}{3}\right)^2\)
\(a.\left(2xy-3\right)^2=4x^2y^2-12xy+9\)
\(b.\left(\dfrac{1}{2}x+\dfrac{1}{3}\right)^2=\dfrac{1}{4}x^2+\dfrac{1}{3}x+\dfrac{1}{9}\)
a)\(\left(2xy-3\right)^2=\left(2xy\right)^2-2\cdot2xy\cdot3+3^2=4x^2y^2-12xy+9\)
b)\(\left(\dfrac{1}{2}x+\dfrac{1}{3}y\right)^2=\left(\dfrac{1}{2}x\right)^2+2\cdot\dfrac{1}{2}x\cdot\dfrac{1}{3}y+\left(\dfrac{1}{3}y\right)^2\)
\(=\dfrac{1}{4}x^2+\dfrac{1}{3}xy+\dfrac{1}{9}y^2\)
Chứng minh các hằng đẳng thức sau: \(x^4+y^4+\left(x+y\right)^4=2\left(x^2+xy+y^2\right)^2\)
Chứng minh vế trái bằng vế phải:
\(x^4+y^4+\left(x+y\right)^4=2x^4+2y^4+4x^3y+4xy^3+6x^2y^2\)
\(=2\left(x^4+y^4+2x^3y+2xy^3+3x^2y^2\right)\)
\(=2\left(x^4+y^4+x^2y^2+2x^3y+2xy^3+2x^2y^2\right)\)
\(=2\left(x^2+y^2+xy\right)^2\)
\(\text{Chứng minh vế trái bằng vế phải: }\)
\(x^4+y^4+\left(x+y\right)^4=2x^4+2y^4+4x^3y+4xy^3+6x^2y^2\)
\(=2\left(x^4+y^4+2x^3y+2xy^3+3x^2y^2\right)\)
\(=2\left(x^4+y^4+x^2y^2+2x^3y+2xy^3+2x^2y^2\right)\)
\(=2\left(x^2+y^2+xy\right)^2\)